"Superadobe" is a method for the construction of self-built shelters that has three main advantages: It’s economical, it’s easy to execute by common people, and produces buildings with good structural behavior against natural events such as earthquakes, floods, fire and high winds [1]. It consists in filling polypropylene sacks with a moist mixture of clay, sand, gravel and lime/cement; placing and compacting one on top of another in the form of concentric rings of decreasing radii and describing a double curvature monolith. (Similar to a paraboloid).The construction of these domed monoliths follow a simple geometrical pattern based on the use of compasses, hence the form, and other building characteristics can be parametric. This is, a system of equations for these building’s physical dimensions can be derived, based on initial parameters.These equation’s variables can be divided into independent ('constructive') and dependent ('observable'), and by defining the values of the independent parameters (sack dimensions, radius of base (internal compass), radius of roof (external compass), radius of skylight, dimensions of openings, mean material specific weight, mean material elastic modulus, mean friction coefficient between rows, etc.), resulting dimensions and mechanical behaviors, such as building height, interior habitable area, proportion of rows that rest upon the previous, or total building weight, maximum shear force amongst all rows, axial stresses, etc. can be determined.This article deals with the resulting geometrical dimensions of the building, given corresponding initial parameters. If we were to set some dependent variables as fixed values, we could solve the system of equations for the missing independent parameters. This would allow for example, to set design values for building weight and height, and to determine the unknown values for the corresponding radiuses and necessary sack dimensions which will produce a building that meets this pre requisites.This paper briefly explains a geometrical model of Superadobe domed structures.
A Superadobe dome is a parameterization in the sense that given some initial parameters, the structure can becompletely determined by them [1]. While a set of such initial parameters can produce a safe and functional structure, a differentset can result in an unsafe, unstable, or even geometrically senseless structure.It is necessary for a Superadobe designer to predict the structure’s final dimensions and mechanical behavior from the initialparameters of his or her choice, so as to be able to choose them wisely. These initial independent numbers must satisfy some equationscontaining variables of both geometrical and mechanical nature, yet the parameters’ compliance with the single, purely-geometricalequation showcased in this article, is a necessary condition for all functional Superadobe domes. References[1] López, M. González, M. Llauradó, N. 2019. “EQUATIONS THAT DESCRIBE THE GEOMETRY OF SUPERADOBE DOMED STRUCTURES.” engrXiv. March 14. doi:10.31224/osf.io/ptq47.
Superadobe Technology consists on filling long polypropylene sacks with a moist mixture of clay, sand, gravel and lime/cement; placing and compacting one on top of another forming concentric rings of decreasing radius and describing a double curvature monolith.From the 26th of August till the 6th of September of 2017, a group of 10 students at the “Domoterra” Institute of Earthbag construction, in the province of Teruel, autonomous community of Aragon, Spain, participated in the construction of what would become a Superadobe domed shelter of internal diameter 4m, roughly 3.5m high with the capacity to enclose 17.5m^2 of habitable surface, using approximately 250m of polypropylene sack and 20 m³ of earth.The structure advanced from an initial base cylinder of 0.5 m to the height of 2.1 m in 7 effective work days of 8 hours each day, and such an experience is taken into account together with existing literature, to describe the construction process of a Superadobe dome.
me. To Bárbara and Quique, and all my friends from the Domoterra institute, for the joy and the lessons we shared. Most specially, to my dear brother Dean. To my esteemed professors María de las Nieves González Alfonso Cobo and Nuria Llauradó because their trust in me made this work possible and they have been closest to me during this effort. And to my friend Samuel Canadell, for his generosity and invaluable advice.
This article shows Static structural analyses performed on 35 different Superadobe domed models. The dimensions of these models were defined according to a controlled variation of initial parameters, guided by previously derived equations. Maximum and Minimum principal stresses, Shear stresses and total deformations were measured assuming an idealized material with isotropic elasticity. Besides the dome’s self-weight, wind loads are considered from the most dangerous angle with respect to the openings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.