Impulsivity is a personality trait exhibited by healthy individuals, but excessive impulsivity is associated with some mental disorders. Lesion and functional neuroimaging studies indicate that the ventromedial prefrontal region (VMPFC), including the orbitofrontal cortex (OFC), anterior cingulate cortex (ACC) and medial prefrontal cortex, and the amygdala may modulate impulsivity and aggression. However, no morphometric study has examined the association between VMPFC and impulsivity. We hypothesized that healthy subjects with high impulsivity would have smaller volumes in these brain regions compared with those with low impulsivity. Sixty-two healthy subjects were studied (age 35.4 +/- 12.1 years) using a 1.5-T MRI system. The Barratt impulsiveness scale (BIS) was used to assess impulsivity. Images were processed using an optimized voxel-based morphometry (VBM) protocol. We calculated the correlations between BIS scale scores and the gray matter (GM) and white matter (WM) volumes of VMPFC and amygdala. GM volumes of the left and right OFC were inversely correlated with the BIS total score (P = 0.04 and 0.02, respectively). Left ACC GM volumes had a tendency to be inversely correlated with the BIS total score (P = 0.05). Right OFC GM volumes were inversely correlated with BIS nonplanning impulsivity, and left OFC GM volumes were inversely correlated with motor impulsivity. There were no significant WM volume correlations with impulsivity. The results of this morphometry study indicate that small OFC volume relate to high impulsivity and extend the prior finding that the VMPFC is involved in the circuit modulating impulsivity.
The prefrontal cortex, a part of the limbic-thalamic-cortical network, participates in regulation of mood, cognition and behavior and has been implicated in the pathophysiology of major depressive disorder (MDD). Many neuropsychological studies demonstrate impairment of working memory in patients with MDD. However, there are few functional neuroimaging studies of MDD patients during working memory processing, and most of the available ones included medicated patients or patients with both MDD and bipolar disorder. We used functional magnetic resonance imaging (fMRI) to measure prefrontal cortex function during working memory processing in untreated depressed patients with MDD. Fifteen untreated individuals with Diagnostic and Statistical Manual of Mental Disorders-Fourth Edition recurrent MDD (mean age7s.d. = 34.3711.5 years) and 15 healthy comparison subjects (37.7712.1 years) matched for age, sex and race were studied using a GE/Elscint 2T MR system. An echo-planar MRI sequence was used to acquire 24 axial slices. The n-back task (0-back, 1-back and 2-back) was used to elicit frontal cortex activation. Data were analyzed with a multiple regression analysis using the FSL-FEAT software. MDD patients showed significantly greater left dorsolateral cortex activation during the n-back task compared to the healthy controls (P < 0.01), although task performance was similar in the two groups. Furthermore, the patients showed significant anterior cingulate cortex activation during the task, but the comparison subjects did not (P < 0.01). This study provides in vivo imaging evidence of abnormal frontolimbic circuit function during working memory processing in individuals with MDD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.