Although universal quantum computers ideally solve problems such as factoring integers exponentially more efficiently than classical machines, the formidable challenges in building such devices motivate the demonstration of simpler, problem-specific algorithms that still promise a quantum speedup. We constructed a quantum boson-sampling machine (QBSM) to sample the output distribution resulting from the nonclassical interference of photons in an integrated photonic circuit, a problem thought to be exponentially hard to solve classically. Unlike universal quantum computation, boson sampling merely requires indistinguishable photons, linear state evolution, and detectors. We benchmarked our QBSM with three and four photons and analyzed sources of sampling inaccuracy. Scaling up to larger devices could offer the first definitive quantum-enhanced computation.
The fundamental problem faced in quantum chemistry is the calculation of molecular properties, which are of practical importance in fields ranging from materials science to biochemistry. Within chemical precision, the total energy of a molecule as well as most other properties, can be calculated by solving the Schrödinger equation. However, the computational resources required to obtain exact solutions on a conventional computer generally increase exponentially with the number of atoms involved 1,2 . This renders such calculations intractable for all but the smallest of systems. Recently, an efficient algorithm has been proposed enabling a quantum computer to overcome this problem by achieving only a polynomial resource scaling with system size 2,3,4 . Such a tool would therefore provide an extremely powerful tool for new science and technology. Here we present a photonic implementation for the smallest problem: obtaining the energies of H 2 , the hydrogen molecule in a minimal basis. We perform a key algorithmic step-the iterative phase estimation algorithm 5,6,7,8 -in full, achieving a high level of precision and robustness to error. We implement other algorithmic steps with assistance from a classical computer and explain how this non-scalable approach could be avoided. Finally, we provide new theoretical results which lay the foundations for the next generation of simulation experiments using quantum computers. We have made early experimental progress towards the long-term goal of exploiting quantum information to speed up quantum chemistry calculations.Experimentalists are just beginning to command the level of control over quantum systems required to explore their information processing capabilities. An important long-term application is to simulate and calculate properties of other many-body quantum systems. Pioneering experiments were first performed using nuclear-magnetic-resonance-based systems to simulate quantum oscillators 9 , leading up to recent simulations of a pairing Hamiltonian 7,10 . Very recently the phase transitions of a two-spin quantum magnet were simulated 11 using an ion-trap system. Here we simulate a quantum chemical system and calculate its energy spectrum, using a photonic system. Molecular energies are represented as the eigenvalues of an associated time-independent HamiltonianĤ and can be efficiently obtained to fixed accuracy, using a quantum algorithm with three distinct steps 6 : encoding a molecular wavefunction into qubits; simulating its time evolution using quantum logic gates; and extracting the approximate energy using the phase estimation algorithm 3,12 . The latter is a general-purpose quantum algorithm for evaluating the eigenvalues of arbitrary Hermitian or unitary operators. The algorithm estimates the phase, φ, accumulated by a molecular eigenstate, |Ψ , under the action of the time-evolution operator,Û =e −iĤt/ , i.e.,where E is the energy eigenvalue of |Ψ . Therefore, estimating the phase for each eigenstate amounts to estimating the eigenvalues of the Hamiltonia...
Entanglement is widely believed to lie at the heart of the advantages offered by a quantum computer. This belief is supported by the discovery that a noiseless (pure) state quantum computer must generate a large amount of entanglement in order to offer any speed up over a classical computer. However, deterministic quantum computation with one pure qubit (DQC1), which employs noisy (mixed) states, is an efficient model that generates at most a marginal amount of entanglement. Although this model cannot implement any arbitrary algorithm it can efficiently solve a range of problems of significant importance to the scientific community. Here we experimentally implement a first-order case of a key DQC1 algorithm and explicitly characterise the non-classical correlations generated. Our results show that while there is no entanglement the algorithm does give rise to other non-classical correlations, which we quantify using the quantum discord-a stronger measure of nonclassical correlations that includes entanglement as a subset. Our results suggest that discord could replace entanglement as a necessary resource for a quantum computational speed-up. Furthermore, DQC1 is far less resource intensive than universal quantum computing and our implementation in a scalable architecture highlights the model as a practical short-term goal.In contrast to the highly pure multi-qubit states required for the conventional models of quantum computing [1, 2], DQC1 employs only a single qubit in a pure state, alongside a register of qubits in the fully mixed state [3]. While this model is strictly less powerful than a universal quantum computer (where one can implement any arbitrary algorithm) it can still efficiently solve important problems that are thought to be classically intractable. The application originally identified was the efficient simulation of some quantum systems [3]. Since then exponential speed-ups have been identified in estimating: the average fidelity decay under quantum maps [4]; quadratically signed weight enumerators [5]; and the Jones Polynomial in knot theory [6]. Recently it has been shown that DQC1 also affords efficient parameter estimation at the quantum metrology limit [7]. Furthermore, attempts to find an efficient way of classically simulating DQC1 have failed [8]. These results provide strong evidence that a device capable of implenting scalable DQC1 algorithms would be an extremely useful tool.Besides the practical applications, DQC1 is also fascinating from a fundamental perspective. For example, it is straightforward to show that a model employing only fully mixed qubits offers no advantage over a classical computer. It is therefore surprising that the addition of only a single pure qubit offers such a dramatic increase in computational power. Furthermore, an important quantum information result is that a pure state quantum computer can only offer an advantage over a classical approach if it generates an amount of entanglement that grows with the size of the problem being tackled [9,10]. This support...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.