BackgroundThere are thousands of apps promoting dietary improvement, increased physical activity (PA) and weight management. Despite a growing number of reviews in this area, popular apps have not been comprehensively analysed in terms of features related to engagement, functionality, aesthetics, information quality, and content, including the types of change techniques employed.MethodsThe databases containing information about all Health and Fitness apps on GP and iTunes (7,954 and 25,491 apps) were downloaded in April 2015. Database filters were applied to select the most popular apps available in both stores. Two researchers screened the descriptions selecting only weight management apps. Features, app quality and content were independently assessed using the Mobile App Rating Scale (MARS) and previously-defined categories of techniques relevant to behaviour change. Inter-coder reliabilities were calculated, and correlations between features explored.ResultsOf the 23 popular apps included in the review 16 were free (70 %), 15 (65 %) addressed weight control, diet and PA combined; 19 (83 %) allowed behavioural tracking. On 5-point MARS scales, apps were of average quality (Md = 3.2, IQR = 1.4); “functionality” (Md = 4.0, IQR = 1.1) was the highest and “information quality” (Md = 2.0, IQR = 1.1) was the lowest domain. On average, 10 techniques were identified per app (range: 1–17) and of the 34 categories applied, goal setting and self-monitoring techniques were most frequently identified. App quality was positively correlated with number of techniques included (rho = .58, p < .01) and number of “technical” features (rho = .48, p < .05), which was also associated with the number of techniques included (rho = .61, p < .01). Apps that provided tracking used significantly more techniques than those that did not. Apps with automated tracking scored significantly higher in engagement, aesthetics, and overall MARS scores. Those that used change techniques previously associated with effectiveness (i.e., goal setting, self-monitoring and feedback) also had better “information quality”.ConclusionsPopular apps assessed have overall moderate quality and include behavioural tracking features and a range of change techniques associated with behaviour change. These apps may influence behaviour, although more attention to information quality and evidence-based content are warranted to improve their quality.Electronic supplementary materialThe online version of this article (doi:10.1186/s12966-016-0359-9) contains supplementary material, which is available to authorized users.
Background Mobile health apps (MHA) have the potential to improve health care. The commercial MHA market is rapidly growing, but the content and quality of available MHA are unknown. Instruments for the assessment of the quality and content of MHA are highly needed. The Mobile Application Rating Scale (MARS) is one of the most widely used tools to evaluate the quality of MHA. Only few validation studies investigated its metric quality. No study has evaluated the construct validity and concurrent validity. Objective This study evaluates the construct validity, concurrent validity, reliability, and objectivity, of the MARS. Methods Data was pooled from 15 international app quality reviews to evaluate the metric properties of the MARS. The MARS measures app quality across four dimensions: engagement, functionality, aesthetics and information quality. Construct validity was evaluated by assessing related competing confirmatory models by confirmatory factor analysis (CFA). Non-centrality (RMSEA), incremental (CFI, TLI) and residual (SRMR) fit indices were used to evaluate the goodness of fit. As a measure of concurrent validity, the correlations to another quality assessment tool (ENLIGHT) were investigated. Reliability was determined using Omega. Objectivity was assessed by intra-class correlation. Results In total, MARS ratings from 1,299 MHA covering 15 different health domains were included. Confirmatory factor analysis confirmed a bifactor model with a general factor and a factor for each dimension (RMSEA = 0.074, TLI = 0.922, CFI = 0.940, SRMR = 0.059). Reliability was good to excellent (Omega 0.79 to 0.93). Objectivity was high (ICC = 0.82). MARS correlated with ENLIGHT (ps<.05). Conclusion The metric evaluation of the MARS demonstrated its suitability for the quality assessment. As such, the MARS could be used to make the quality of MHA transparent to health care stakeholders and patients. Future studies could extend the present findings by investigating the re-test reliability and predictive validity of the MARS.
A note on versions:The version presented here may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher's version. Please see the repository url above for details on accessing the published version and note that access may require a subscription.For more information, please contact eprints@nottingham.ac.uk AbstractPurpose. This study aimed to investigate the reasons for participating and not participating in an e-health workplace physical activity (PA) intervention.Methodology. Semi-structured interviews and two focus groups were conducted with a purposive sample of employees who enrolled and participated in the intervention and with those who did not complete enrolment, hence did not participate in it. Data was examined using thematic analysis according to the clusters of "reasons for participation" and for "nonparticipation". Findings.Reported reasons for participation included a need to be more active, to increase motivation to engage in PA, and to better manage weight. Employees were attracted by the perceived ease of use of the programme and by the promise of receiving reminders.Many felt encouraged to enrol by managers or peers. Reported reasons for non-participation included lack of time, loss of interest towards the programme, or a lack of reminders to complete enrolment. Practical implications.Future e-health workplace behavioural interventions should consider focusing on employees' needs and motivators to behaviour change, provide regular reminders for participants to complete enrolment and ensure that procedures are completed successfully. Barriers to participation could be identified through formative research with the target population and feasibility studies.Originality/value. This study combines a qualitative analysis of the reasons why some employees decided to enrol in a workplace PA intervention and why some others did not. This study highlights factors to consider when designing, implementing and promoting similar Running head: Reasons for participating in a workplace PA intervention 2 interventions and that could inform strategies to enhance participation in workplace PA interventions.
BackgroundWidespread diffusion of mobile phone and Web 2.0 technologies make them potentially useful tools for promoting health and tackling public health issues, such as the increasing prevalence of overweight and obesity. Research in this domain is growing rapidly but, to date, no review has comprehensively and systematically documented how mobile and Web 2.0 technologies are being deployed and evaluated in relation to weight management.ObjectiveTo provide an up-to-date, comprehensive map of the literature discussing the use of mobile phone and Web 2.0 apps for influencing behaviors related to weight management (ie, diet, physical activity [PA], weight control, etc).MethodsA systematic scoping review of the literature was conducted based on a published protocol (registered at PROSPERO: CRD42014010323). Using a comprehensive search strategy, we searched 16 multidisciplinary electronic databases for original research documents published in English between 2004 and 2014. We used duplicate study selection and data extraction. Using an inductively developed charting tool, selected articles were thematically categorized.ResultsWe identified 457 articles, mostly published between 2013 and 2014 in 157 different journals and 89 conference proceedings. Articles were categorized around two overarching themes, which described the use of technologies for either (1) promoting behavior change (309/457, 67.6%) or (2) measuring behavior (103/457, 22.5%). The remaining articles were overviews of apps and social media content (33/457, 7.2%) or covered a combination of these three themes (12/457, 2.6%). Within the two main overarching themes, we categorized articles as representing three phases of research development: (1) design and development, (2) feasibility studies, and (3) evaluations. Overall, articles mostly reported on evaluations of technologies for behavior change (211/457, 46.2%).ConclusionsThere is an extensive body of research on mobile phone and Web 2.0 technologies for weight management. Research has reported on (1) the development, feasibility, and efficacy of persuasive mobile technologies used in interventions for behavior change (PA and diet) and (2) the design, feasibility, and accuracy of mobile phone apps for behavioral assessment. Further research has focused exclusively on analyses of the content and quality of available apps. Limited evidence exists on the use of social media for behavior change, but a segment of studies deal with content analyses of social media. Future research should analyze mobile phone and Web 2.0 technologies together by combining the evaluation of content and design aspects with usability, feasibility, and efficacy/effectiveness for behavior change, or accuracy/validity for behavior assessment, in order to understand which technological components and features are likely to result in effective interventions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.