The clinical challenge of percutaneous coronary interventions (PCI) is highly dependent on the recognition of the coronary anatomy of each individual. The classic imaging modality used for PCI is angiography, but advanced imaging techniques that are routinely performed during PCI, like optical coherence tomography (OCT), may provide detailed knowledge of the pre-intervention vessel anatomy as well as the post-procedural assessment of the specific stent-to-vessel interactions. Computational fluid dynamics (CFD) is an emerging investigational tool in the setting of optimization of PCI results. In this study, an OCT-based reconstruction method was developed for the execution of CFD simulations of patient-specific coronary artery models which include the actual geometry of the implanted stent. The method was applied to a rigid phantom resembling a stented segment of the left anterior descending coronary artery. The segmentation algorithm was validated against manual segmentation. A strong correlation was found between automatic and manual segmentation of lumen in terms of area values. Similarity indices resulted >96% for the lumen segmentation and >77% for the stent strut segmentation. The 3D reconstruction achieved for the stented phantom was also assessed with the geometry provided by X-ray computed micro tomography scan, used as ground truth, and showed the incidence of distortion from catheter-based imaging techniques. The 3D reconstruction was successfully used to perform CFD analyses, demonstrating a great potential for patient-specific investigations. In conclusion, OCT may represent a reliable source for patient-specific CFD analyses which may be optimized using dedicated automatic segmentation algorithms.
Purpose: The purpose of the paper was to use a virtual phantom to identify a set of radiomic features from T1-weighted and T2-weighted magnetic resonance imaging (MRI) of the brain which is stable to variations in image acquisition parameters and to evaluate the effect of image preprocessing on radiomic features stability. Methods: Stability to different sources of variability (time of repetition and echo, voxel size, random noise and intensity non-uniformity) was evaluated for both T1-weighted and T2-weighted MRI images. A set of 107 radiomic features, accounting for shape and size, first order statistics, and textural features was used. Feature stability was quantified using intraclass correlation coefficient (ICC). For each source of variability, stability was evaluated before and after preprocessing (Z-score normalization, resampling, gaussian filtering and bias field correction). Features that have ICC > 0.75 in all the analysis of variability are selected as stable features. Last, the robust feature sets were tested on images acquired with random simulation parameters to assess their generalizability to unseen conditions. Results: Preprocessing significantly increased the robustness of radiomic features to the different sources of variability. When preprocessing is applied, a set of 67 and 61 features resulted as stable for T1-weighted and T2-wieghted images respectively, over 80% of which were confirmed by the analysis on the images acquired with random simulation parameters. Conclusion: A set of MRI-radiomic features, robust to changes in TR/TE/PS/ST, was identified. This set of features may be used in radiomic analyses based on T1-weighted and T2-weighted MRI images.
Advanced stage nasopharyngeal cancer (NPC) shows highly variable treatment outcomes, suggesting the need for independent prognostic factors. This study aims at developing a magnetic resonance imaging (MRI)-based radiomic signature as a prognostic marker for different clinical endpoints in NPC patients from non-endemic areas. A total 136 patients with advanced NPC and available MRI imaging (T1-weighted and T2-weighted) were selected. For each patient, 2144 radiomic features were extracted from the main tumor and largest lymph node. A multivariate Cox regression model was trained on a subset of features to obtain a radiomic signature for overall survival (OS), which was also applied for the prognosis of other clinical endpoints. Validation was performed using 10-fold cross-validation. The added prognostic value of the radiomic features to clinical features and volume was also evaluated. The radiomics-based signature had good prognostic power for OS and loco-regional recurrence-free survival (LRFS), with C-index of 0.68 and 0.72, respectively. In all the cases, the addition of radiomics to clinical features improved the prognostic performance. Radiomic features can provide independent prognostic information in NPC patients from non-endemic areas.
The objectives of the study are to develop a new way to assess stability and discrimination capacity of radiomic features without the need of test-retest or multiple delineations and to use information obtained to perform a preliminary feature selection. Apparent diffusion coefficient (ADC) maps were computed from diffusion-weighted magnetic resonance images (DW-MRI) of two groups of patients: 18 with soft tissue sarcomas (STS) and 18 with oropharyngeal cancers (OPC). Sixty-nine radiomic features were computed, using three different histogram discretizations (16, 32, and 64 bins). Geometrical transformations (translations) of increasing entity were applied to the regions of interest (ROIs), and the intra-class correlation coefficient (ICC) was used to compare the features computed on the original and modified ROIs. The distribution of ICC values for minimal and maximal entity translations (ICC10 and ICC100, respectively) was used to adjust thresholds of ICC (ICCmin and ICCmax) used to discriminate between good, unstable (ICC10 < ICCmin), and non-discriminative features (ICC100 > ICCmax). Fifty-four and 59 radiomic features passed the stability-based selection for all the three histogram discretizations for the OPC and STS datasets, respectively. The excluded features were similar across the different histogram discretizations (Jaccard’s index 0.77 ± 0.13 and 0.9 ± 0.1 for OPC and STS, respectively) but different between datasets (Jaccard’s index 0.19 ± 0.02). The results suggest that the observed radiomic features are mainly stable and discriminative, but the stability depends on the region of the body under observation. The method provides a way to assess stability without the need of test-retest or multiple delineations.Electronic supplementary materialThe online version of this article (10.1007/s10278-018-0092-9) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.