Deep Neural Networks (DNNs) are the core component of modern autonomous driving systems. To date, it is still unrealistic that a DNN will generalize correctly to all driving conditions. Current testing techniques consist of offline solutions that identify adversarial or corner cases for improving the training phase. In this paper, we address the problem of estimating the confidence of DNNs in response to unexpected execution contexts with the purpose of predicting potential safety-critical misbehaviours and enabling online healing of DNN-based vehicles. Our approach SelfOracle is based on a novel concept of self-assessment oracle, which monitors the DNN confidence at runtime, to predict unsupported driving scenarios in advance. SelfOracle uses autoencoderand time series-based anomaly detection to reconstruct the driving scenarios seen by the car, and to determine the confidence boundary between normal and unsupported conditions. In our empirical assessment, we evaluated the effectiveness of different variants of SelfOracle at predicting injected anomalous driving contexts, using DNN models and simulation environment from Udacity. Results show that, overall, SelfOracle can predict 77% misbehaviours, up to six seconds in advance, outperforming the online input validation approach of DeepRoad. CCS CONCEPTS • Software and its engineering → Software testing and debugging.
Deep Neural Networks (DNNs) are the core component of modern autonomous driving systems. To date, it is still unrealistic that a DNN will generalize correctly in all driving conditions. Current testing techniques consist of offline solutions that identify adversarial or corner cases for improving the training phase, and little has been done for enabling online healing of DNN-based vehicles.In this paper, we address the problem of estimating the confidence of DNNs in response to unexpected execution contexts with the purpose of predicting potential safety-critical misbehaviours such as out of bound episodes or collisions. Our approach SelfOracle is based on a novel concept of self-assessment oracle, which monitors the DNN confidence at runtime, to predict unsupported driving scenarios in advance. SelfOracle uses autoencoder and time-series-based anomaly detection to reconstruct the driving scenarios seen by the car, and determine the confidence boundary of normal/unsupported conditions.In our empirical assessment, we evaluated the effectiveness of different variants of SelfOracle at predicting injected anomalous driving contexts, using DNN models and simulation environment from Udacity. Results show that, overall, SelfOracle can predict 77% misbehaviours, up to 6 seconds in advance, outperforming the online input validation approach of DeepRoad by a factor almost equal to 3.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.