Climate change has been reported as a driver for emerging food and feed safety issues worldwide and its expected impact on the presence of mycotoxins in food and feed is of great concern. Aflatoxins have the highest acute and chronic toxicity of all mycotoxins; hence, the maximal concentration in agricultural food and feed products and their commodities is regulated worldwide. The possible change in patterns of aflatoxin occurrence in crops due to climate change is a matter of concern that may require anticipatory actions. The aim of this study was to predict aflatoxin contamination in maize and wheat crops, within the next 100 years, under a +2 °C and +5 °C climate change scenario, applying a modelling approach. Europe was virtually covered by a net, 50 × 50 km grids, identifying 2254 meshes with a central point each. Climate data were generated for each point, linked to predictive models and predictions were run consequently. Aflatoxin B 1 is predicted to become a food safety issue in maize in Europe, especially in the +2 °C scenario, the most probable scenario of climate change expected for the next years. These results represent a supporting tool to reinforce aflatoxin management and to prevent human and animal exposure.Climate change has been reported as a driver for emerging food and feed safety issues worldwide [1][2][3][4] .The expected impact of climate change on the presence of mycotoxins in food and feed is of great concern. These fungal metabolites are important causes of chronic toxicity from exposure via food 5,6 ; in particular, aflatoxins, which have the highest acute and chronic toxicity of all mycotoxins 7 . Hence, the maximal concentration of aflatoxins in agricultural food and feed products and their commodities is regulated worldwide, with specific restrictions in Europe (Commission Regulation EU/574/2011, 2006/1881/EC and amendments). The possible change in patterns of aflatoxin occurrence in food and feed crops due to climate change is a matter of concern that may require anticipatory actions.Crop growth and its interaction with beneficiary and pathogenic and/or toxigenic microorganisms vary from year to year, mainly depending on local weather, making the agricultural sector particularly exposed to climate change 8 . The topic is of great economic and societal interest both for the quantitative and qualitative effects on crop yield and the impact on the occurrence of mycotoxins 9 .Around nine million hectares of maize and 26 million hectares of common wheat are yearly grown in Europe, and cereals in general contribute to approximately 30% of the human diet of industrialised countries (data from FAOStat http://faostat3.fao.org/home/E), as well as to roughly 50% of the animal feed in Europe (European Commission, Agricultural and Rural Development, Short term outlook, 2015). Therefore, any problem related to food and feed crops is of great economic and health concern.The most toxic mycotoxins are aflatoxins, which can occur in host crops infected by some species of Aspergillus. Aflatoxins are...
Twelve yeast strains isolated from the surface of Italian typical dry-cured hams, belonging to D. hansenii, D. maramus, C. famata, C. zeylanoides and H. burtonii species, and previously selected for their ability to grow in dry-cured ham-like substrates, were screened for antagonistic activity against a toxigenic strain of P. nordicum and inhibition of ochratoxin A (OTA) biosynthesis. On average, yeast inhibitory activity was lowered by increasing fungal inoculum and enhanced by NaCl presence. In the assay conditions, H. burtonii and C. zeylanoides were the most effective, both in inhibiting P. nordicum growth and OTA production. D. hansenii was the species with the lowest inhibitory activity, especially in the absence of salt. OTA production dropped from the range < LOD − 5000 ppb in P. nordicum control plates to the range < LOD − 200 ppb in yeast-added plates. OTA production increased in the presence of NaCl in P. nordicum control plates, while salt enhanced inhibition against OTA production in yeast-added plates.
During the last decade, there have been many advances in research and technology that have greatly contributed to expanded capabilities and knowledge in detection and measurement, characterization, biosynthesis, and management of mycotoxins in maize. MycoKey, an EU‐funded Horizon 2020 project, was established to advance knowledge and technology transfer around the globe to address mycotoxins impacts in key food and feed chains. MycoKey included several working groups comprised of international experts in different fields of mycotoxicology. The MycoKey Maize Working Group recently convened to gather information and strategize for the development and implementation of solutions to the maize mycotoxin problem in light of current and emerging technologies. This feature summarizes the Maize WG discussion and recommendations for addressing mycotoxin problems in maize. Discussions focused on aflatoxins, deoxynivalenol, fumonisins, and zearalenone, which are the most widespread and persistently important mycotoxins in maize. Although regional differences were recognized, there was consensus about many of the priorities for research and effective management strategies. For pre-harvest management, genetic resistance and selecting adapted maize genotypes, along with insect management, were among the most fruitful strategies identified across the mycotoxin groups. For post-harvest management, the most important practices included timely harvest, rapid grain drying, grain cleaning, and carefully managed storage conditions. Remediation practices such as optical sorting, density separation, milling, and chemical detoxification were also suggested. Future research and communication priorities included advanced breeding technologies, development of risk assessment tools, and the development and dissemination of regionally relevant management guidelines.
Climate change (CC) is predicted to increase the risk of aflatoxin (AF) contamination in maize, as highlighted by a project supported by EFSA in 2009. We performed a comprehensive literature search using the Scopus search engine to extract peer-reviewed studies citing this study. A total of 224 papers were identified after step I filtering (187 + 37), while step II filtering identified 25 of these papers for quantitative analysis. The unselected papers (199) were categorized as “actions” because they provided a sounding board for the expected impact of CC on AFB1 contamination, without adding new data on the topic. The remaining papers were considered as “reactions” of the scientific community because they went a step further in their data and ideas. Interesting statements taken from the “reactions” could be summarized with the following keywords: Chain and multi-actor approach, intersectoral and multidisciplinary, resilience, human and animal health, and global vision. In addition, fields meriting increased research efforts were summarized as the improvement of predictive modeling; extension to different crops and geographic areas; and the impact of CC on fungi and mycotoxin co-occurrence, both in crops and their value chains, up to consumers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.