Imprecision is inherent in any decidable (sound) approximation of undecidable program properties. In abstract interpretation this corresponds to the release of false alarms, e.g., when it is used for program analysis and program verification. As all alarming systems, a program analysis tool is credible when few false alarms are reported. As a consequence, we have to live together with false alarms, but also we need methods to control them. As for all approximation methods, also for abstract interpretation we need to estimate the accumulated imprecision during program analysis. In this paper we introduce a theory for estimating the error propagation in abstract interpretation, and hence in program analysis. We enrich abstract domains with a weakening of a metric distance. This enriched structure keeps coherence between the standard partial order relating approximated objects by their relative precision and the effective error made in this approximation. An abstract interpretation is precise when it is complete. We introduce the notion of partial completeness as a weakening of precision. In partial completeness the abstract interpreter may produce a bounded number of false alarms. We prove the key recursive properties of the class of programs for which an abstract interpreter is partially complete with a given bound of imprecision. Then, we introduce a proof system for estimating an upper bound of the error accumulated by the abstract interpreter during program analysis. Our framework is general enough to be instantiated to most known metrics for abstract domains.
Metamorphic malware are self-modifying programs which apply semantic preserving transformations to their own code in order to foil detection systems based on signature matching. Metamorphism impacts both software security and code protection technologies: it is used by malware writers to evade detection systems based on pattern matching and by software developers for preventing malicious host attacks through software diversification. In this paper, we consider the problem of automatically extracting metamorphic signatures from the analysis of metamorphic malware variants. We define a metamorphic signature as an abstract program representation that ideally captures all the possible code variants that might be generated during the execution of a metamorphic program. For this purpose, we developed MetaSign: a tool that takes as input a collection of metamorphic code variants and produces, as output, a set of transformation rules that could have been used to generate the considered metamorphic variants. MetaSign starts from a control flow graph representation of the input variants and agglomerates them into an automaton which approximates the considered code variants. The upper approximation process is based on the concept of widening automata, while the semantic preserving transformation rules, used by the metamorphic program, can be viewed as rewriting rules and modeled as grammar productions. In this setting, the grammar recognizes the language of code variants, while the production rules model the metamorphic transformations. In particular, we formalize the language of code variants in terms of pure context-free grammars, which are similar to context-free grammars with no terminal symbols. After the widening process, we create a positive set of samples from which we extract the productions of the grammar by applying a learning grammar technique. This allows us to learn the transformation rules used by the metamorphic engine to generate the considered code variants. We validate the results of MetaSign on some case studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.