This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
A C C E P T E D M A N U S C R I P T ACCEPTED MANUSCRIPT
AbstractThe procedure proposed by Bai and Ng (2002) to identify the number of factors in static factor models is revisited. In order to improve its performance, we introduce a tuning multiplicative constant in the penalty, an idea that was proposed by Hallin and Liška (2007) in the context of dynamic factor models. Simulations show that our method in general delivers more reliable estimates, in particular in the case of large idiosyncratic disturbances.
Current economic theory typically assumes that all the macroeconomic variables belonging to a given economy are driven by a small number of structural shocks. As recently argued, apart from negligible cases, the structural shocks can be recovered if the information set contains current and past values of a large, potentially infinite, set of macroeconomic variables. However, the usual practice of estimating small size causal Vector AutoRegressions can be extremely misleading as in many cases such models could fully recover the structural shocks only if future values of the few variables considered were observable. In other words, the structural shocks may be non-fundamental with respect to the small dimensional vector used in current macroeconomic practice. By reviewing a recent strand of econometric literature, we show that, as a solution, econometricians should enlarge the space of observations, and thus consider models able to handle very large panels of related time series. Among several alternatives, we review dynamic factor models together with their economic interpretation, and we show how non-fundamentalness is non-generic in this framework. Finally, using a factor model, we provide new empirical evidence on the effect of technology shocks on labour productivity and hours worked.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.