In underwater environments, ensuring people’s safety is complicated, with potentially life-threatening outcomes, especially when divers have to work in deeper conditions. To improve the available solutions for working with robots in this kind of environment, we propose the validation of a control strategy for robots when taking objects from the seabed. The control strategy proposed is based on acceleration feedback in the model of the system. Using this model, the reference values for position, velocity and acceleration are estimated, and then the position error signal can be computed. When the desired position is obtained, it is possible to then obtain the position error. The validation was carried out using three different objects: a ball, a bottle, and a plant. The experiment consisted of using this control strategy to take those objects, which the robot carried for a moment to validate the stabilisation control and reference following the control in terms of angle and depth. The robot was operated by a pilot from outside of the pool and was guided using a camera and sonar in a teleoperated way. As an advantage of this control strategy, the model upon which the robot is based is decoupled, allowing control of the robot for each uncoupled plane, this being the main finding of these tests. This demonstrates that the robot can be controlled by a control strategy based on a decoupled model, taking into account the hydrodynamic parameters of the robot.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.