Arrhythmogenic Cardiomyopathy (AC) is a clinically and genetically heterogeneous myocardial disease. Half of AC patients harbour private desmosomal gene variants. Although microRNAs (miRNAs) have emerged as key regulator molecules in cardiovascular diseases and their involvement, correlated to phenotypic variability or to non-invasive biomarkers, has been advanced also in AC, no data are available in larger disease cohorts. Here, we propose the largest AC cohort unbiased by technical and biological factors. MiRNA profiling on nine right ventricular tissue, nine blood samples of AC patients, and four controls highlighted 10 differentially expressed miRNAs in common. Six of these were validated in a 90-AC patient cohort independent from genetic status: miR-122-5p, miR-133a-3p, miR-133b, miR-142-3p, miR-182-5p, and miR-183-5p. This six-miRNA set showed high discriminatory diagnostic power in AC patients when compared to controls (AUC-0.995), non-affected family members of AC probands carrying a desmosomal pathogenic variant (AUC-0.825), and other cardiomyopathy groups (Hypertrophic Cardiomyopathy: AUC-0.804, Dilated Cardiomyopathy: AUC-0.917, Brugada Syndrome: AUC-0.981, myocarditis: AUC-0.978). AC-related signalling pathways were targeted by this set of miRNAs. A unique set of six-miRNAs was found both in heart-tissue and blood samples of AC probands, supporting its involvement in disease pathogenesis and its possible role as a non-invasive AC diagnostic biomarker.
Background: Arrhythmogenic cardiomyopathy (AC) is an inherited heart muscle disease associated with point mutations in genes encoding for cardiac desmosome proteins. Conventional mutation screening is positive in ≈50% of probands. Copy number variations (CNVs) have recently been linked to AC pointing to the need to determine the prevalence of CNVs in desmosomal genes and to evaluate disease penetrance by cosegregation analysis in family members. Methods and Results: A total of 160 AC genotype-negative probands for 5 AC desmosomal genes by conventional mutation screening underwent multiplex ligation-dependent probe amplification. Nine heterozygous CNVs were identified in 11 (6.9%) of the 160 probands. Five carried a deletion of the entire plakophilin-2 ( PKP2 ) gene, 2 a deletion of only PKP2 exon 4, 1 a deletion of the PKP2 exons 6 to 11, 1 a PKP2 duplication of 5′ untranslated region till exon 1, 1 the desmocollin-2 ( DSC2 ) duplication of exons 7 to 9, and 1 a large deletion of chromosome 18 comprising both DSC2 and desmoglein-2 genes. All probands were affected by moderate-severe forms of the disease, whereas 10 (32%) of the 31 family members carrying one of these deletions fulfilled the diagnostic criteria. Conclusions: Genomic rearrangements were detected in ≈7% of AC probands negative for pathogenic point mutations in desmosomal genes, highlighting the potential of CNVs analysis to substantially increase the diagnostic yield of genetic testing. Genotype–phenotype correlation demonstrated the presence of the disease in about one third of family members carrying the CNV, underlying the role of other factors in the development and progression of the disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.