Purpose Hybrid navigation is a promising technique which combines the benefits of optical or electromagnetic tracking (EMT) and fluoroscopy imaging. Unfortunately, the fluoroscopy system is a source of metallic distortion for the EMT system. In this work, we present a new method for intraoperative calibration and real-time compensation of dynamic field distortions. The method was tested in the presence of a fluoroscopy C-arm, and sub-millimetre errors were obtained after distortion correction. Methods A hybrid navigation scenario was created by combining the open-source electromagnetic tracking system Anser EMT and a commercial fluoroscopy C-arm. The electromagnetic field generator was placed directly on top of the X-ray collimator, which introduced significant field distortion. Magnetic sensors were placed at known positions to capture the magnetic distortion, and virtual magnetic dipole sources were used to model the distortion magnetic field. The accuracy of the compensated EMT model was tested on a grid of test points. Results Error reduction was demonstrated from 12.01 to 0.35 mm and from 25.03 to 0.49 mm, for horizontal and vertical sensor orientations, respectively, over a volume of 16 × 16 × 6 cm. It is proposed that such sub-millimetre tracking errors meet the needs of most endoscopic navigation tasks. Conclusions We describe a method to model a magnetic field in real time, based on redundant electromagnetic field measurements, and we apply it to compensate for the distortion introduced by a fluoroscopy C-arm. The main limitation of the approach is the requirement for a high number of sensors, with possible occlusion of the operative space. Solutions might come from miniaturisation and wireless sensing.
Electromagnetic tracking is a safe, reliable, and cost-effective method to track medical instruments in image-guided surgical navigation. However, patient motion and magnetic field distortions heavily impact the accuracy of tracked position and orientation. The use of redundant magnetic sensors can help to map and mitigate for patient movements and magnetic field distortions within the tracking region. We propose a planar inductive sensor design, printed on PCB and embedded into medical patches. The main advantage is the high repeatability and the cost benefit of using mass PCB manufacturing processes. The article presents new operative formulas for electromagnetic tracking of planar coils on the centimetre scale. The full magnetic analytical model is based on the mutual inductance between coils which can be approximated as being composed by straight conductive filaments. The full model is used to perform accurate system simulations and to assess the accuracy of faster simplified magnetic models, which are necessary to achieve real-time tracking in medical applications.
Purpose Electromagnetic tracking (EMT) is beneficial in image-guided interventions to reduce the use of ionising radiation-based imaging techniques. Enabling wirelessly tracked sensors will increase the usability of these systems for catheter tracking and patient registration systems. This work introduces a novel method of wirelessly transmitting sensor data using a frequency modulation (FM) radio. Methods The proposed technique was tested using the open-source Anser EMT system. An electromagnetic sensor was connected in parallel to an FM transmitter prototype and wired directly to the Anser system for comparison. The performance of the FM transmitter was evaluated on a grid of 125 test points using an optical tracking system as a gold standard. Results An average position accuracy of 1.61 ± 0.68 mm and angular rotation accuracy of 0.04° for the FM transmitted sensor signal was obtained over a 30 cm × 30 cm × 30 cm volume, in comparison with the 1.14 ± 0.80 mm, 0.04° accuracy previously reported for the Anser system. The FM transmitted sensor signal had an average resolved position precision of 0.95 mm while the directly wired signal was found to have an average precision of 1.09 mm. A very low frequency ($$\sim $$ ∼ 5 mHz) oscillation in the wirelessly transmitted signal was observed and compensated for by performing a dynamic scaling of the magnetic field model used for solving the sensor pose. Conclusions We demonstrate that FM transmission of an electromagnetic sensor signal can be used to achieve similar tracking performance to a wired sensor. FM transmission for wireless EMT is a viable alternative to digital sampling and transmission over Bluetooth. Future work will create an integrated wireless sensor node using FM communication that is compatible with existing EMT systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.