The hypothalamic pituitary adrenal axis and dopamine have a key role in transition from alcohol social use to addiction. The medial prefrontal cortex was shown to modulate dopaminergic activity and cortisol releasing factor (CRF) release in hypothalamic and extra-hypothalamic systems. The recent advancements in non-invasive neurostimulation technologies has enabled stimulation of deeper brain regions using H-coil transcranial magnetic stimulation (TMS) in humans. This randomized double-blind placebo-controlled pilot study aims to evaluate H-coil efficacy in stimulating the medial prefrontal cortex. Cortisolemia and prolactinemia were evaluated as effectiveness markers. Alcohol intake and craving were considered as secondary outcomes. Eighteen alcoholics were recruited and randomized into 2 homogeneous groups: 9 in the real stimulation group and 9 in the sham stimulation group. Repetitive TMS (rTMS) was administered through a magnetic stimulator over 10 sessions at 20 Hz, directed to the medial prefrontal cortex. rTMS significantly reduced blood cortisol levels and decreased prolactinemia, thus suggesting dopamine increase. Craving visual analogic scale (VAS) in treated patients decreased, as well as mean number of alcoholic drinks/day and drinks on days of maximum alcohol intake (DMAI). In the sham group there was no significant effect observed on cortisolemia, prolactinemia, mean number of alcoholic drinks/day, or drinks/DMAI. Thus, deep rTMS could be considered a potential new treatment for alcoholism.
Ethanol (EtOH) exposure during pregnancy induces cognitive and physiological deficits in the offspring. However, the role of paternal alcohol exposure (PAE) on offspring EtOH sensitivity and neurotrophins has not received much attention. The present study examined whether PAE may disrupt nerve growth factor (NGF) and/or brain-derived neurotrophic factor (BDNF) and affect EtOH preference/rewarding properties in the male offspring. CD1 sire mice were chronically addicted for EtOH or administered with sucrose. Their male offsprings when adult were assessed for EtOH preference by a conditioned place preference paradigm. NGF and BDNF, their receptors (p75 NTR , TrkA and TrkB), dopamine active transporter (DAT), dopamine receptors D1 and D2, pro-NGF and pro-BDNF were also evaluated in brain areas. PAE affected NGF levels in frontal cortex, striatum, olfactory lobes, hippocampus and hypothalamus. BDNF alterations in frontal cortex, striatum and olfactory lobes were found. PAE induced a higher susceptibility to the EtOH rewarding effects mostly evident at the lower concentration (0.5 g/kg) that was ineffective in non-PAE offsprings. Moreover, higher ethanol concentrations (1.5 g/kg) produced an aversive response in PAE animals and a significant preference in non-PAE offspring. PAE affected also TrkA in the hippocampus and p75 NTR in the frontal cortex. DAT was affected in the olfactory lobes in PAE animals treated with 0.5 g/kg of ethanol while no differences were found on D1/D2 receptors and for pro-NGF or pro-BDNF. In conclusion, this study shows that: PAE affects NGF and BDNF expression in the mouse brain; PAE may induce ethanol intake preference in the male offspring.
Background22q11.2 deletion syndrome (22q11.2DS) is considered as the genetic model of schizophrenia. However, its polymorphic nature has led researchers to further investigate its neuropsychiatric manifestations.MethodsWe enrolled 56 adults (38 men, 18 women) diagnosed with 22q11.2DS. All subjects were evaluated by a multidisciplinary team. The neuropsychiatric features were investigated by means of clinical and neurophysiological evaluation (video-EEG).ResultsThirty per cent of our patients were left-handed. Fifty-eight per cent had a low IQ, and 22 of 56 subjects had psychotic disorders (13 of 22 with schizophrenia). Eighteen patients reported at least one seizure in their lifetime, and ten were diagnosed with epilepsy; among them, seven had genetic generalised epilepsy (GGE), and five of seven showed features suggestive of juvenile myoclonic epilepsy (JME). Video-EEG recordings revealed generalised epileptiform abnormalities in 24 of 56 cases. Besides, only one patient with epilepsy had a cardiac malformation. Lastly, 31 of 56 subjects presented with parkinsonism, 16 of whom were taking neuroleptics. None of the 15 patients with parkinsonism not related to neuroleptic therapy was diagnosed with epilepsy, compared with 6 of those taking antipsychotics.Conclusions22q11.2DS is characterised by left-handedness and neuropsychiatric features such as cognitive impairment, schizophrenia, epilepsy and parkinsonism. GGE, mostly the JME phenotype, is the predominant epilepsy type. The significant association between 22q11.2DS and parkinsonian features confirms these patients’ genetic susceptibility to parkinsonism. Despite the lack of any conclusive evidence, our study suggests a possible relationship between the analysed clinical variables: (1) an inverse correlation between low IQ/psychosis/epilepsy and major cardiac diseases; (2) a direct association between psychosis and both mental delay and epilepsy; and (3) an inverse correlation between parkinsonism and epilepsy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.