In recent years, there has been a growing demand for small vehicles targeted at users with mobility restrictions and designed to operate on pedestrian areas. The users of these vehicles are generally required to be in control for the entire duration of their journey, but a lot more people could benefit from them if some of the driving tasks could be automated. In this scenario, we set out to develop an autonomous mobility scooter, with the aim to understand the commercial feasibility of a similar product. This paper reports on the progress of this project, proposing a framework for autonomous navigation on pedestrian areas, and focusing in particular on the construction of suitable costmaps. The proposed framework is based on open-source software, including a library created by the authors for the generation of costmaps.
This paper presents a novel flight assistance system, OAST (Obstacle Avoidance System for Teleoperation), whose main role is to make teleoperation of small multirotor UAVs safer and more efficient in closed spaces. OAST allows the operator to avoid obstacles while keeping a liberty of movement. The UAV is controlled through a 3D haptic controller and OAST amends the user input to increase safety and efficiency of the teleoperation. The design of OAST is verified in computerized experiments. Moreover, a simulation involving 20 participants is carried out to validate the proposed scheme. This experiment shows that OAST improves the completion time of the scenarios by 41% on average while reducing the workload of the operator from 57 to 27 points on the NASA Task Load Index test. The number of collisions with the environment is all but eliminated in these scenarios.
The Normal Distribution Transform Occupancy Map (NDT OM) is a mapping algorithm able to represent a dynamic 3D environment. The resulting map has fixed boundaries, thus a robot with unbounded displacement might fall outside of the map due to memory limitation. In this paper, a recentering algorithm called NDT RC is proposed to avoid this issue. NDT RC extends the use of NDT OM for vehicles with unbounded displacements. NDT RC provides a seamless translation of the map as the robot gets far from the center of the previous map. The influence of NDT RC on the precision of the estimated trajectory of the robot, or odometry, is examined on two publicly available datasets, the KITTI and Ford datasets. An analysis of the sensitivity of the NDT RC to its tuning parameters is carried out using the Ford dataset, while the KITTI dataset is used to measure the influence of the density of the input point cloud. The results show that the proposed recentering strategy improves the accuracy of the odometry calculated by registering the latest lidar scan on the generated map compared to other NDT based approaches (NDT OM, NDT OM Fusion, SE-NDT). In particular, the proposed method, which does not perform loop closure, reduces the mean absolute translation error by 16 % and the runtime by 88 % compared to the NDT OM Fusion on the Ford dataset.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.