The solubility of nine aroma compounds (acetone, 2-butanone, 2-hexanone, 2-octanone, ethyl acetate, ethyl butanoate, ethyl hexanoate, n-hexanal, and n-hexanol) in both water and various aqueous solutions was measured at 25°C using the mutual solubility method. The aqueous solutions consisted of sucrose, glucose, sorbitol, glycerol, polyethylene glycol 200, or maltodextrins at different concentrations. Aroma solubility in water decreased with increased hydrophobicity. For aroma molecules which have the same number of carbon atoms in their structure, aqueous solubility decreased as follows: aldehyde > > > > > methyl ketone > > > > > alcohol > > > > > ethyl ester. When using a group contribution method, the estimated solubility of ethyl esters and methyl ketones in water was, respectively, underestimated and overestimated. Compared to water, the solubility of the volatile molecules in aqueous solutions was higher in the aqueous polyols solutions than in the carbohydrate solutions, although solubility decreased as substrate concentration increased. Aqueous solutions properties, such as water activity, also influenced aroma compound solubility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.