Earlier detection is key to reducing cancer deaths. Here, we describe a blood test that can detect eight common cancer types through assessment of the levels of circulating proteins and mutations in cell-free DNA. We applied this test, called CancerSEEK, to 1005 patients with nonmetastatic, clinically detected cancers of the ovary, liver, stomach, pancreas, esophagus, colorectum, lung, or breast. CancerSEEK tests were positive in a median of 70% of the eight cancer types. The sensitivities ranged from 69 to 98% for the detection of five cancer types (ovary, liver, stomach, pancreas, and esophagus) for which there are no screening tests available for average-risk individuals. The specificity of CancerSEEK was greater than 99%: only 7 of 812 healthy controls scored positive. In addition, CancerSEEK localized the cancer to a small number of anatomic sites in a median of 83% of the patients.
More than 2% of the adult U.S. population harbors a pancreatic cyst. These often pose a difficult management problem because conventional criteria cannot always distinguish cysts with malignant potential from those that are innocuous. One of the most common cystic neoplasms of the pancreas, and a bona fide precursor to invasive adenocarcinoma, is called intraductal papillary mucinous neoplasm (IPMN). To help reveal the pathogenesis of these lesions, we purified the DNA from IPMN cyst fluids from 19 patients and searched for mutations in 169 genes commonly altered in human cancers. In addition to the expected KRAS mutations, we identified recurrent mutations at codon 201 of GNAS. A larger number (113) of additional IPMNs were then analyzed to determine the prevalence of KRAS and GNAS mutations. In total, we found that GNAS mutations were present in 66% of IPMNs and that either KRAS or GNAS mutations could be identified in 96%. In eight cases, we could investigate invasive adenocarcinomas that developed in association with IPMNs containing GNAS mutations. In seven of these eight cases, the GNAS mutations present in the IPMNs were also found in the invasive lesion. GNAS mutations were not found in other types of cystic neoplasms of the pancreas or in invasive adenocarcinomas not associated with IPMNs. In addition to defining a new pathway for pancreatic neoplasia, these data suggest that GNAS mutations can inform the diagnosis and management of patients with cystic pancreatic lesions.
More than 2% of adults harbor a pancreatic cyst, a subset of which progresses to invasive lesions with lethal consequences. To assess the genomic landscapes of neoplastic cysts of the pancreas, we determined the exomic sequences of DNA from the neoplastic epithelium of eight surgically resected cysts of each of the major neoplastic cyst types: serous cystadenomas (SCAs), intraductal papillary mucinous neoplasms (IPMNs), mucinous cystic neoplasms (MCNs), and solid pseudopapillary neoplasms (SPNs). SPNs are low-grade malignancies, and IPMNs and MCNs, but not SCAs, have the capacity to progress to cancer. We found that SCAs, IPMNs, MCNs, and SPNs contained 10 ± 4.6, 27 ± 12, 16 ± 7.6, and 2.9 ± 2.1 somatic mutations per tumor, respectively. Among the mutations identified, E3 ubiquitin ligase components were of particular note. Four of the eight SCAs contained mutations of the von Hippel-Lindau gene (VHL), a key component of the VHL ubiquitin ligase complex that has previously been associated with renal cell carcinomas, SCAs, and other neoplasms. Six of the eight IPMNs and three of the eight MCNs harbored mutations of RNF43, a gene coding for a protein with intrinsic E3 ubiquitin ligase activity that has not previously been found to be genetically altered in any human cancer. The preponderance of inactivating mutations in RNF43 unequivocally establish it as a suppressor of both IPMNs and MCNs. SPNs contained remarkably few genetic alterations but always contained mutations of CTNNB1, previously demonstrated to inhibit degradation of the encoded protein (β-catenin) by E3 ubiquitin ligases. These results highlight the essential role of ubiquitin ligases in these neoplasms and have important implications for the diagnosis and treatment of patients with cystic tumors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.