A fundamental issue that arises in the framework of probabilistic seismic risk analysis is the choice of ground motion intensity measures (IMs). A new structure-specific IM, namely, relative average spectral acceleration (ASA R ), is being proposed herein, and a comparison with current IMs is performed based on (1) a large data set of recorded earthquake signals;(2) numerical analyses conducted with state-of-the-art finite element (FE) models, representing actual load-bearing walls and frame structures, and validated against experimental test; and (3) systematic statistical analyses of the results. According to a comparative study of the case of nonlinear structural behavior, the ASA R proves to be the most efficient IM with respect to demand parameters, such as maximum interstory drift, frequency drop and maximum ductility demand. Beyond the sufficiency and simplicity of its formulation, which allow for the use of existing ground motion prediction models, the ASA R offers a promising IM for performance-based seismic design and/or assessment.
Summary A fundamental issue in the framework of seismic probabilistic risk analysis is the choice of ground motion intensity measures (IMs). Based on the floor response spectrum method, the present contribution focuses on the ability of IMs to predict non‐structural components (NSCs) horizontal acceleration demand. A large panel of IMs is examined and a new IM, namely equipment relative average spectral acceleration (E‐ASAR), is proposed for the purpose of NSCs acceleration demand prediction. The IMs efficiency and sufficiency comparisons are based on (i) the use of a large dataset of recorded earthquake ground motions; (ii) numerical analyses performed on three‐dimensional numerical models, representing actual structural wall and frame buildings; and (iii) systematic statistical analysis of the results. From the comparative study, the herein introduced E‐ASAR shows high efficiency with respect to the estimation of maximum floor response spectra ordinates. Such efficiency is particularly remarkable in the case of structural wall buildings. Besides, the sufficiency and the simple formulation allowing the use of existing ground motion prediction models make the E‐ASAR a promising IMs for seismic probabilistic risk assessment. Copyright © 2015 John Wiley & Sons, Ltd.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.