T helper 9 (Th9) cells contribute to lung inflammation and allergy as sources of interleukin-9 (IL-9). However, the mechanisms by which IL-9/Th9 mediate immunopathology in the lung are unknown. Here we report an IL-9-driven positive feedback loop that reinforces allergic inflammation. We show that IL-9 increases IL-2 production by mast cells, which leads to expansion of CD25+ type 2 innate lymphoid cells (ILC2) and subsequent activation of Th9 cells. Blocking IL-9 or inhibiting CD117 (c-Kit) signalling counteracts the pathogenic effect of the described IL-9-mast cell-IL-2 signalling axis. Overproduction of IL-9 is observed in expectorates from cystic fibrosis (CF) patients, and a sex-specific variant of IL-9 is predictive of allergic reactions in female patients. Our results suggest that blocking IL-9 may be a therapeutic strategy to ameliorate inflammation associated with microbial colonization in the lung, and offers a plausible explanation for gender differences in clinical outcomes of patients with CF.
SummaryCandida albicans is implicated in intestinal diseases. Identifying host signatures that discriminate between the pathogenic versus commensal nature of this human commensal is clinically relevant. In the present study, we identify IL-9 and mast cells (MCs) as key players of Candida commensalism and pathogenicity. By inducing TGF-β in stromal MCs, IL-9 pivotally contributes to mucosal immune tolerance via the indoleamine 2,3-dioxygenase enzyme. However, Candida-driven IL-9 and mucosal MCs also contribute to barrier function loss, dissemination, and inflammation in experimental leaky gut models and are upregulated in patients with celiac disease. Inflammatory dysbiosis occurs with IL-9 and MC deficiency, indicating that the activity of IL-9 and MCs may go beyond host immunity to include regulation of the microbiota. Thus, the output of the IL-9/MC axis is highly contextual during Candida colonization and reveals how host immunity and the microbiota finely tune Candida behavior in the gut.
Objectives. The activation of immune responses in mucosal tissues is a key factor for the development and sustainment of several pathologies including infectious diseases and autoimmune diseases. However, translational research and personalised medicine struggle to advance because of the lack of suitable preclinical models that successfully mimic the complexity of human tissues without relying on in vivo mouse models. Here, we propose two in vitro human 3D tissue models, deprived of any resident leucocytes, to model mucosal tissue inflammatory processes. Methods. We developed human 3D lung and intestinal organoids differentiated from induced pluripotent stem cells to model mucosal tissues. We then compared their response to a panel of microbial ligands and investigated their ability to attract and host human primary monocytes. Results. Mature lung and intestinal organoids comprised epithelial (EpCAM + ) and mesenchymal (CD73 + ) cells which responded to Toll-like receptor stimulation by releasing pro-inflammatory cytokines and expressing tissue inflammatory markers including MMP9, COX2 and CRP. When added to the organoid culture, primary human monocytes migrated towards the organoids and began to differentiate to an 'intermediate-like' phenotype characterised by increased levels of CD14 and CD16. Conclusion. We show that human mucosal organoids exhibit proper immune functions and successfully mimic an immunocompetent tissue microenvironment able to host patient-derived immune cells. Our experimental set-up provides a novel tool to tackle the complexity of immune responses in mucosal tissues which can be tailored to different human pathologies.
The human gut harbors a wide range of microorganisms that play a fundamental role in the well-being of their host. A dysregulation of the microbial composition can lead to the development or exacerbation of gastrointestinal (GI) disorders. Emerging evidence supports the hypothesis that mast cells (MCs) play a role in host-microbiota communication, modulating the mutual influence between the host and its microbiota through changes in their activation state. The ability of some bacteria to specifically affect MC functions and activation has been extensively studied, with different and sometimes conflicting results, while only little is known about MC-fungi interactions. In this review, the most recent advances in the field of MC-bacteria and MC-fungi interactions will be discussed, with a particular focus on the role of these interactions in the onset of GI disorders such as inflammatory bowel diseases (IBD). Moreover, the connection between some MC-targeting drugs and IBD was discussed, suggesting probiotics as reasonable and promising therapy in the management of IBD patients. Keywords: Inflammatory bowel disease (IBD) r Intestine r Mast cells r Microbiota r Neurons Additional supporting information may be found online in the Supporting Information section at the end of the article. of the high affinity receptor for IgE on the surface of the cell and of the proteases-containing granules in the cytosol, under the influence of tissue-specific molecules (including SCF, IL-3, and IL-9) and bacterial-derived molecules (LPS and peptidoglycan) present in the local microenvironment [1]. Intestinal homing of MCs progenitors is mainly mediated by the interaction of α4β7 integrin expressed by MCs with ICAM-1, V-CAM, or MAdCAM-1 expressed by endothelial cells and it is influenced by CXCR2 ligation [2, 3].MCs possess a great number of costimulatory molecules, including members of the B7 family (ICOSL, PD-L1, and PD-L2,) and of the TNF/TNFR families (OX40L, CD153, Fas, 4-1BB, and glucocorticoid-induced TNFR), which allow them to interact with different partners both from immune and nonimmune cells populations as well as with bacteria and fungi through the expression of different pattern-recognition receptors (PRRs) [4]. Moreover, MCs harbor a high number of cytoplasmic granules that contain preformed immunomodulatory compounds such as proteases, histamine, heparin, and TNF-α. Given the wide pattern Eur.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.