This paper presents the first unsupervised approach to lexical semantic change that makes use of contextualised word representations. We propose a novel method that exploits the BERT neural language model to obtain representations of word usages, clusters these representations into usage types, and measures change along time with three proposed metrics. We create a new evaluation dataset and show that the model representations and the detected semantic shifts are positively correlated with human judgements. Our extensive qualitative analysis demonstrates that our method captures a variety of synchronic and diachronic linguistic phenomena. We expect our work to inspire further research in this direction.
We perform an interdisciplinary large-scale evaluation for detecting lexical semantic divergences in a diachronic and in a synchronic task: semantic sense changes across time, and semantic sense changes across domains. Our work addresses the superficialness and lack of comparison in assessing models of diachronic lexical change, by bringing together and extending benchmark models on a common state-of-the-art evaluation task. In addition, we demonstrate that the same evaluation task and modelling approaches can successfully be utilised for the synchronic detection of domain-specific sense divergences in the field of term extraction.
We present the first exploration of meaning shift over short periods of time in online communities using distributional representations. We create a small annotated dataset and use it to assess the performance of a standard model for meaning shift detection on shortterm meaning shift. We find that the model has problems distinguishing meaning shift from referential phenomena, and propose a measure of contextual variability to remedy this.
Information about individuals can help to better understand what they say, particularly in social media where texts are short. Current approaches to modelling social media users pay attention to their social connections, but exploit this information in a static way, treating all connections uniformly. This ignores the fact, well known in sociolinguistics, that an individual may be part of several communities which are not equally relevant in all communicative situations. We present a model based on Graph Attention Networks that captures this observation. It dynamically explores the social graph of a user, computes a user representation given the most relevant connections for a target task, and combines it with linguistic information to make a prediction. We apply our model to three different tasks, evaluate it against alternative models, and analyse the results extensively, showing that it significantly outperforms other current methods.
Abuse on the Internet represents a significant societal problem of our time. Previous research on automated abusive language detection in Twitter has shown that communitybased profiling of users is a promising technique for this task. However, existing approaches only capture shallow properties of online communities by modeling followerfollowing relationships. In contrast, working with graph convolutional networks (GCNs), we present the first approach that captures not only the structure of online communities but also the linguistic behavior of the users within them. We show that such a heterogeneous graph-structured modeling of communities significantly advances the current state of the art in abusive language detection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.