Improving productivity in the entertainment industry is a very challenging task as it heavily depends on generating attractive content for the consumers. The consumer-centric design (putting the consumers at the centre of the content development and production) focuses on ways in which businesses can design customized services and products which accurately reflect consumer preferences. We propose a new framework which allows to use data science to optimize content-generation in entertainment and test this framework for the motion picture industry. We use the natural language processing methodology combined with econometric analysis to explore whether and to what extent emotions shape consumer preferences for media and entertainment content, which, in turn, affect revenue streams. By analyzing 6,174 movie scripts, we generate the emotional trajectory of each motion picture. We then combine the obtained mappings into clusters which represent groupings of consumer emotional journeys. These clusters are then plugged into an econometric model to predict overall success parameters of the movies including box office revenues, viewer satisfaction levels (captured by IMDb ratings), awards, as well as the number of viewers' and critics' reviews. We find that emotional arcs in movies can be partitioned into 6 basic shapes. The highest box offices are associated with the Man in a Hole shape which is characterized by an emotional fall followed by an emotional rise. This U-shaped emotional arc results in financially successful movies irrespective of genre and production budget. Implications of this analysis for generating on-demand content and improving productivity in entertainment industries are discussed.
Universities and higher education institutions form an integral part of the national infrastructure and prestige. As academic research benefits increasingly from international exchange and cooperation, many universities have increased investment in improving and enabling their global connectivity. Yet, the relationship of university performance and its global physical connectedness has not been explored in detail. We conduct, to our knowledge, the first large-scale data-driven analysis into whether there is a correlation between university relative ranking performance and its global connectivity via the air transport network. The results show that local access to global hubs (as measured by air transport network betweenness) strongly and positively correlates with the ranking growth (statistical significance in different models ranges between 5% and 1% level). We also found that the local airport’s aggregate flight paths (degree) and capacity (weighted degree) has no effect on university ranking, further showing that global connectivity distance is more important than the capacity of flight connections. We also examined the effect of local city economic development as a confounding variable and no effect was observed suggesting that access to global transportation hubs outweighs economic performance as a determinant of university ranking. The impact of this research is that we have determined the importance of the centrality of global connectivity and, hence, established initial evidence for further exploring potential connections between university ranking and regional investment policies on improving global connectivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.