Background/aimsTo compare the accuracy of 13 formulas for intraocular lens (IOL) power calculation in cataract surgery.MethodsIn this retrospective interventional case series, optical biometry measurements were entered into these formulas: Barrett Universal II (BUII) with and without anterior chamber depth (ACD) as a predictor, EVO 2.0 with and without ACD as a predictor, Haigis, Hoffer Q, Holladay 1, Holladay 2AL, Kane, Næser 2, Pearl-DGS, RBF 2.0, SRK/T, T2 and VRF. The mean prediction error (PE), median absolute error (MedAE), mean absolute error and percentage of eyes with a PE within ±0.25, ±0.50, ±0.75 and ±1.00 diopters (D) were calculated.ResultsTwo hundred consecutive eyes were enrolled. With all formulas, the mean PE was zero. The BUII with no ACD had the lowest standard deviation (±0.343 D), followed by the T2 (0.347 D), Kane (0.348 D), EVO 2.0 with no ACD (0.348 D) and BUII with ACD (0.353 D) formulas. The difference among the MedAEs of all formulas was statistically significant (p<0.0001); the lowest values were achieved with the Kane (0.214 D), RBF 2.0 (0.215 D), BUII with and without ACD (0.218 D) and SRK/T (0.223 D). A percentage ranging from 80% to 88.5% of eyes showed a PE within ±0.50 D and all formulas achieved more than 50% of eyes with a PE within ±0.25 D.ConclusionAll investigated formulas achieved good results; there was a tendency towards better outcomes with newer formulas. Traditional formulas can still be considered an accurate option.
Purpose: The purpose of the present study was to compare visual function assessment, visual evoked potential, and optical coherence tomography with measurement of retinal nerve fiber layer thickness for the diagnosis of optic pathway glioma in children with neurofibromatosis type 1. Methods: This retrospective observational study included patients with neurofibromatosis type 1 who underwent brain magnetic resonance imaging scan, visual evoked potential study, and peripapillary retinal nerve fiber layer evaluation by optical coherence tomography. Patients were tested with pattern-reversal visual evoked potential and with flash visual evoked potential in case of poor cooperation. Optical coherence tomography was performed with HRA Spectralis (Heidelberg Engineering, Heidelberg, Germany). The area under the curve of receiver operating characteristic curves was used to evaluate the accuracy of each parameter for diagnosing optic pathway glioma. Results: In all, 110 patients with neurofibromatosis type 1 were included in the study. Fifty of them had an optic pathway glioma diagnosed with magnetic resonance imaging, while 60 did not. Global retinal nerve fiber layer thickness demonstrated the highest diagnostic power for discriminating patients with and without optic pathway glioma (area under the curve = 0.758, sensitivity = 65.3%, specificity = 83.3%), followed visual acuity (area under the curve = 0.723, sensitivity = 51.1%, specificity = 91.7%) and P100 of visual evoked potential (area under the curve = 0.712, sensitivity = 69.6%, specificity = 63.8%). Conclusion: The results of the present study showed that the measurement of retinal nerve fiber layer thickness was the most efficient test for discriminating patients with and without optic pathway glioma. Brain magnetic resonance imaging remains the gold standard to confirm the diagnosis of optic pathway glioma. Longitudinal studies are required to define if the early detection of tumors with optical coherence tomography could prevent vision loss and morbidity.
Purpose: To investigate the presence of amblyopia risk factors in newborns with congenital nasolacrimal duct obstruction (CNLDO) and age-matched healthy control subjects. Methods: This retrospective case-control study involved newborns aged 30 to 60 days with CNLDO and age-matched healthy control subjects. Amblyopia risk factors were identified in accordance with the American Association for Pediatric Ophthalmology and Strabismus Vision Screening Committee recommendations. The prevalence of amblyopia risk factors was compared in newborns with CNLDO and age-matched healthy control subjects, newborns with unilateral and bilateral CNLDO, and the affected eye and fellow eye of newborns with unilateral CNLDO. Results: Amblyopia risk factors were found in 18 patients (11.9%) with CNLDO and 19 control subjects (8.7%) ( P = .314). Eyes with CNLDO showed a significantly lower spherical equivalent compared to control eyes (2.01 ± 1.21 vs 2.79 ± 1.14 diopters, P < .001). No difference in amblyopia risk factors was found in eyes with unilateral and bilateral CNLDO (11.5% vs 12.1%; P = .908) or in eyes with unilateral CNLDO and fellow eyes (9.8% vs 12.3%; P = .540). Conclusions: CNLDO does not seem to be associated with amblyopia risk factors in newborns. Because anisometropia might develop later on, all patients with CNLDO should be monitored for amblyopia. [ J Pediatr Ophthalmol Strabismus . 2020;57(1):39–43.]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.