Key message
Beech and pine respond differently to climate change. June precipitation is of particular influence for beech, and February/March temperature for pine.
Abstract
Climate warming exposes forests to increasing abiotic stress, demanding for difficult silvicultural decisions about the right choice of future timber species. Scots pine (Pinus sylvestris) and European beech (Fagus sylvatica) are major timber species in the North German Lowlands, which have suffered from recent hot droughts, thus raising concern about their suitability for future production forests in the region. We investigated the climate sensitivity of tree growth and long-term growth trends of ten paired beech and pine forests along a precipitation gradient in the North German Lowlands with the aim to compare the species’ climate sensitivity and to search for species-specific climatic thresholds. In the majority of beech stands, basal area increment (BAI) has lost its positive trend since the 1980s or growth declined since then, while the BAI of pine has continually increased. Long-term change in June precipitation is in the study region a more important determinant of beech growth trends than the amount of MAP, while pine growth is largely dependent on the warmth of February/March. Yet, pine growth is also sensitive to dry mid summers, with sensitivity increasing toward low MAP. Climate sensitivity of growth has significantly declined since the 1980s in beech, while the dominant drought signal of June persisted in pine. We conclude that recent climate change is affecting radial growth of beech and pine differently with both species revealing signs of vulnerability to hot droughts, suggesting for the drier part of the study region the preference of more drought-tolerant hardwood timber species over beech and pine.
Background
Organic carbon stored in forest soils (SOC) represents an important element of the global C cycle. It is thought that the C storage capacity of the stable pool can be enhanced by increasing forest productivity, but empirical evidence in support of this assumption from forests differing in tree species and productivity, while stocking on similar substrate, is scarce.
Methods
We determined the stocks of SOC and macro-nutrients (nitrogen, phosphorus, calcium, potassium and magnesium) in nine paired European beech/Scots pine stands on similar Pleistocene sandy substrates across a precipitation gradient (560–820 mm∙yr− 1) in northern Germany and explored the influence of tree species, forest history, climate, and soil pH on SOC and nutrient pools.
Results
While the organic layer stored on average about 80% more C under pine than beech, the pools of SOC and total N in the total profile (organic layer plus mineral soil measured to 60 cm and extrapolated to 100 cm) were greater under pine by about 40% and 20%, respectively. This contrasts with a higher annual production of foliar litter and a much higher fine root biomass in beech stands, indicating that soil C sequestration is unrelated to the production of leaf litter and fine roots in these stands on Pleistocene sandy soils. The pools of available P and basic cations tended to be higher under beech. Neither precipitation nor temperature influenced the SOC pool, whereas tree species was a key driver. An extended data set (which included additional pine stands established more recently on former agricultural soil) revealed that, besides tree species identity, forest continuity is an important factor determining the SOC and nutrient pools of these stands.
Conclusion
We conclude that tree species identity can exert a considerable influence on the stocks of SOC and macronutrients, which may be unrelated to productivity but closely linked to species-specific forest management histories, thus masking weaker climate and soil chemistry effects on pool sizes.
Comparing northern GermanScots pine plantations with natural beech forests: Soil carbon pools and growth dynamics Dissertation zur Erlangung des mathematisch-naturwissenschaftlichen Doktorgrades "Doctor rerum naturalium" der Georg-
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.