This paper begins with an overview of the boundary condition capturing approach to solving problems with interfaces. Although, the authors' original motivation was to extend the ghost fluid method from compressible to incompressible flow, the elliptic nature of incompressible flow quickly quenched the idea that ghost cells could be defined and used in the usual manner. Instead the boundary conditions had to be implicitly captured by the matrix formulation itself, leading to the novel approach. We first review the work on the variable coefficient Poisson equation, noting that the simplicity of the method allowed for an elegant convergence proof. Simplicity and robustness also allowed for a quick extension to threedimensional two-phase incompressible flows including the effects of viscosity and surface tension, which is discussed subsequently. The method has enjoyed popularity in both computational physics and computer graphics, and we show some comparisons with the traditional delta function approach for the visual simulation of bubbles. Finally, we discuss extensions to problems where the velocity is discontinuous as well, as is the case for premixed flames, and show an example of multiple interacting liquids that includes all of the aforementioned phenomena.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.