Hyperphosphorylation at tyrosine is commonly observed in tumor proteomes and, hence, specific phosphoproteins or phosphopeptides could serve as markers useful for cancer diagnostics and therapeutics. The analysis of such targets is, however, a challenging task, because of their commonly low abundance and the lack of robust and effective preconcentration techniques. As a robust alternative to the commonly used immunoaffinity techniques that rely on phosphotyrosine(pTyr)-specific antibodies, we have developed an epitope-imprinting strategy that leads to a synthetic pTyr-selective imprinted polymer receptor. The binding site incorporates two monourea ligands placed by preorganization around a pTyr dianion template. The tight binding site displayed good binding affinities for the pTyr template, in the range of that observed for corresponding antibodies, and a clear preference for pTyr over phosphoserine (pSer). In further analogy to the antibodies, the imprinted polymer was capable of capturing short tyrosine phosphorylated peptides in the presence of an excess of their non-phosphorylated counterparts or peptides phosphorylated at serine.
A series of urea-based vinyl monomers was synthesized and investigated for their ability to function as polymerizable hosts for the molecular imprinting of N-Z-D- or L-glutamic acid in polar media (DMSO or DMF). The monomers were synthesized in one step from a polymerizable isocyanate and a nonpolymerizable amine or vice versa, with yields typically over 70%. Prior to polymerization their solution binding properties vis-a-vis tetrabutylammonium benzoate in DMSO were investigated by 1H NMR, UV-vis and fluorescence monitored titrations. The affinities of the urea monomers for benzoate depended upon the substitution pattern of the urea, with all diaryl ureas exhibiting high affinity. EDMA-based imprinted polymers prepared in DMF or DMSO against Z-D-(or L)-glutamic acid using 2 equiv of the urea monomer and 2 equiv of base were able to recognize the imprinted dianion as well as larger molecules containing the glutamic acid substructure. The affinity, reflected in liquid chromatography retention data, correlated with the solution binding properties of the corresponding monomers.
An efficient enzyme model exhibiting enantioselective esterase activity was prepared by using molecular imprinting techniques. The enantiomerically pure phosphonic monoesters 4 L and 5 L were synthesized as stable transition-state analogues. They were used as templates connected by stoichiometric noncovalent interactions to two equivalents of the amidinium binding site monomer 1. After polymerization and removal of the template, the polymers were efficient catalysts for the hydrolysis of certain nonactivated amino acid phenylesters (2 L, 2 D, 3 L, 3 D) depending on the template used. Imprinted catalyst IP4 (imprinted with 4 L) enhanced the hydrolysis of the corresponding substrate 2 L by a factor of 325 relative to that of a buffered solution. Relative to a control polymer containing the same functionalities, prepared without template 4 L, the enhancement was still about 80-fold, showing the highest imprinting effect up to now. In cross-selectivity experiments a strong substrate selectivity of higher than three was found despite small differences in the structure of the substrate and template. Plots of initial velocities of the hydrolysis versus substrate concentration showed typical Michaelis-Menten kinetics with saturation behavior. From these curves, the Michaelis constant K(M) and the catalytic constant k(cat) can be calculated. The enantioselectivity shown in these values is most interesting. The ratio of the catalytic efficiency k(cat)/K(M), between the hydrolysis of 2 L- and 2 D-substrate with IP4, is 1.65. This enantioselectivity derives from both selective binding of the substrate (K(M)L/K(M)D=0.82), and from selective formation of the transition state (k(cat)L/k(cat)D=1.36). Thus, these catalysts give good catalysis as well as high imprinting and substrate selectivity. Strong competitive inhibition is caused by the template used in imprinting. This behavior is also quite similar to the behavior of natural enzymes, for which these catalysts are good models.
Molecularly imprinted polymer layers were prepared on SERS‐active surfaces in order to directly monitor the uptake and release of certain substances to this polymer layer by surface enhanced Raman‐scattering (SERS). The imprinting system consisted of either (2S,3S)‐(+)‐di‐O‐benzoyl‐tartaric acid (1) or N‐benzyloxycarbonyl‐(L)‐aspartic acid (2) as templates. As binding site N,N′‐diethyl‐4‐vinylbenzamidine (3) was used which binds in a 2:1 complex to the templates. The release and uptake of the templates to the imprinted polymer could be followed in aqueous solution under physiological conditions (aqueous buffer, ambient temperature). The recorded SERS bands can be unequivocally assigned to the substances taken up, and it is therefore possible to directly detect a certain substance in the imprinted layer. Release and uptake are quick processes occurring within minutes. This method also offers the opportunity to use these layers in chemosensors in which case the stability has to be further increased.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.