A deep learning (DL) based digital backpropagation (DBP) method with a 1 dB SNR gain over a conventional 1 step per span DBP is demonstrated in a 32 GBd 16QAM transmission across 1200 km. The new DL-DPB is shown to require 6 times less computational power over the conventional DBP scheme. The achievement is possible due to a novel training method in which the DL-DBP is blind to timing error, state of polarization rotation, frequency offset and phase offset. An analysis of the underlying mechanism is given. The applied method first undoes the dispersion, compensates for nonlinear effects in a distributed fashion and reduces the out of band nonlinear modulation due to compensation of the nonlinearities by having a low pass characteristic. We also show that it is sufficient to update the elements of the DL network using a signal with high nonlinearity when dispersion or nonlinearity conditions changes. Lastly, simulation results indicate that the proposed scheme is suitable to deal with impairments from transmission over longer distances.
Resonant modulators encode electrical data onto wavelength-multiplexed optical carriers. Today, silicon microring modulators are perceived as promising to implement such links; however, they provide limited bandwidth and need thermal stabilization systems. Here we present plasmonic micro-racetrack modulators as a potential successor of silicon microrings: they are equally compact and compatible with complementary-metal–oxide–semiconductor-level driving voltages, but offer electro-optical bandwidths of 176 GHz, a 28 times improved stability against operating temperature changes and no self-heating effects. The temperature-resistant organic electro-optic material enables operation at 85 °C device temperature. We show intensity-modulated transmission of up to 408 Gbps at 12.3 femtojoules per bit with a single resonant modulator. Plasmonic micro-racetrack modulators offer a solution to encode high data rates (for example, the 1.6 Tbps envisioned by next-generation communications links) at a small footprint, with low power consumption and marginal, if no, temperature control.
We present a plasmonic platform featuring efficient, broadband metallic fiber-to-chip couplers that directly interface plasmonic slot waveguides, such as compact and high-speed electro-optic modulators. The metallic gratings exhibit an experimental fiber-to-slot coupling efficiency of −2.7 dB with −1.4 dB in simulations with the same coupling principle. Further, they offer a huge spectral window with a 3 dB passband of 350 nm. The technology relies on a vertically arranged layer stack, metal− insulator−metal waveguides, and fiber-to-slot couplers and is formed in only one lithography step with a minimum feature size of 250 nm. As an application example, we fabricate new modulator devices with an electro-optic organic material in the slot waveguide and reach 50 and 100 Gbit/s data modulation in the O-and C-bands within the same device. The devices' broad spectral bandwidth and their relaxed fabrication may render them suitable for experiments and applications in the scope of sensing, nonlinear optics, or telecommunications.
A transparent Optical-subTHz-Optical link providing record-high single line rates of 240 Gbit/s and 192 Gbit/s on a single optical carrier over distances from 5 to 115 m is demonstrated. Besides a direct mapping of the optical to a 230 GHz subTHz-carrier frequency by means of a uni-traveling carrier (UTC) photodiode, we demonstrate direct conversion of data from the subTHz domain back to the optical domain by a plasmonic modulator. It is shown that the subTHz-to-optical upconversion can even be performed at good quality without any electrical amplifiers. Finally, at the receiver, the local oscillator is employed to directly map the optical signal back to the electrical baseband within a coherent receiver.
OOK line rates of 220 Gbit/s and 408 Gbit/s 8PAM and transmission over 100 m are demonstrated with a resonant plasmonic racetrack modulator. The device requires low 0.6 Vp driver voltages, offers a bandwidth >110 GHz and on-chip losses of 1.0 dB.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.