Microbiologically induced carbonate precipitation (MICP) is a well-known biogeochemical process that allows the formation of calcium carbonate deposits in the extracellular environment. The high concentration of carbonate and calcium ions on the bacterial surface, which serves as nucleation sites, promotes the calcium carbonate precipitation filling and binding deteriorated materials. Historic buildings and artwork, especially those present in open sites, are susceptible to enhanced weathering resulting from environmental agents, interaction with physical-chemical pollutants, and living organisms, among others. In this work, some published variations of a novel and ecological surface treatment of heritage structures based on MICP are presented and compared. This method has shown to be successful as a restoration, consolidation, and conservation tool for improvement of mechanical properties and prevention of unwanted gas and fluid migration from historical materials. The treatment has revealed best results on porous media matrixes; nevertheless, it can also be applied on soil, marble, concrete, clay, rocks, and limestone. MICP is proposed as a potentially safe and powerful procedure for efficient conservation of worldwide heritage structures.
Peptide therapeutics play a key role in the development of new medical treatments. The traditional focus on endogenous peptides has shifted from first discovering other natural sources of these molecules, to later synthesizing those with unique bioactivities. This review provides concise information concerning antimicrobial peptides derived from marine crustaceans for the development of new therapeutics. Marine arthropods do not have an adaptive immune system, and therefore, they depend on the innate immune system to eliminate pathogens. In this context, antimicrobial peptides (AMPs) with unique characteristics are a pivotal part of the defense systems of these organisms. This review covers topics such as the diversity and distribution of peptides in marine arthropods (crustacea and chelicerata), with a focus on penaeid shrimps. The following aspects are covered: the defense system; classes of AMPs; molecular characteristics of AMPs; AMP synthesis; the role of penaeidins, anti-lipopolysaccharide factors, crustins, and stylicins against microorganisms; and the use of AMPs as therapeutic drugs. This review seeks to provide a useful compilation of the most recent information regarding AMPs from marine crustaceans, and describes the future potential applications of these molecules.
Atmospheric nitrogen fixation carried out by microorganisms has environmental and industrial importance, related to the increase of soil fertility and productivity. The present work proposes the development of a new high precision system that allows the recognition of amino acid sequences of the nitrogenase enzyme (NifH) as a promising way to improve the identification of diazotrophic bacteria. For this purpose, a database obtained from UniProt built a processed dataset formed by a set of 4911 and 4782 amino acid sequences of the NifH and non-NifH proteins respectively. Subsequently, the feature extraction was developed using two methodologies: (i) k-mers counting and (ii) embedding layers to obtain numerical vectors of the amino acid chains. Afterward, for the embedding layer, the data was crossed by an external trainable convolutional layer, which received a uniform matrix and applied convolution using filters to obtain the feature maps of the model. Finally, a deep neural network was used as the primary model to classify the amino acid sequences as NifH protein or not. Performance evaluation experiments were carried out, and the results revealed an accuracy of 96.4%, a sensitivity of 95.2%, and a specificity of 96.7%. Therefore, an amino acid sequence-based feature extraction method that uses a neural network to detect N-fixing organisms is proposed and implemented. NIFtHool is available from: https://nifthool.anvil.app/
We evaluated the compatibility between two nitrogen-fixing Bradyrhizobium inoculant strains and phosphate-solubilizing fungal strains and the effect of co-inoculation of these bacterial and fungal strains on cowpea growth under different N and P conditions.First, the compatibility between Bradyrhizobium strains UFLA03-84 and INPA03-11B and fungi Haematonectria ipomoeae FSA381, Eleutherascus lectardii FSA257a, Pochonia chlamydosporia var. catenulata FSA109, and Acremonium polychromum FSA115 was tested in both solid and liquid media. Cowpea growth and nodulation promotion under two mineral N doses and two P conditions (a low dose of soluble P plus a high dose of Ca 3 (PO 4 ) 2 and another condition with a high dose of soluble P) were tested with two N 2 fixing Bradyrhizobium strains co-inoculated with each of the P-solubilizing fungal strains FSA109, FSA115, and FSA381. There was compatibility between each fungal strain and the two Bradyrhizobium strains, except for FSA257a with either of the bacterial strains in liquid medium. When both mineral N and P were limiting, plants were able to grow and accumulate N and P based on biological N 2 fixation and solubilization of calcium phosphate in the same amount as the mineral N and soluble phosphate. Even when both nutrients were fully available, the type of co-inoculation promoted plant growth and nutrient accumulation.The responses varied in accordance with the co-inoculated strains, the N source, and the P source, reflecting the enormous complexity of the biological interactions between plants and microorganisms, and the nutrient conditions provided by the environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.