The repetitive corrugation and straightening process is a severe plastic deformation technique that is particularly suited to process metallic sheets. With this technique, it is possible to develop nano/ultrafine-grained structured materials, and therefore, to improve some mechanical properties such as the yield strength, ultimate tensile strength, and fatigue lifetime. In this study, an Al-6061 alloy was subjected to the repetitive corrugation and straightening process. A new corrugation die design was proposed in order to promote a heterogeneous deformation into the metallic sheet. The evolution of the mechanical properties and microstructure obtained by electron backscatter diffraction of the alloy showed a heterogeneous distribution in the grain size at the initial cycles of the repetitive corrugation and straightening process. Uniaxial tensile tests showed a significant increase in yield strength as the number of repetitive corrugation and straightening passes increased. The distribution of the plastic deformation was correlated with the hardness distribution on the surface. The hardness distribution map matched well with the heterogeneous distribution of the plastic deformation obtained by finite element simulation. A maximum average hardness (147 HV) and yield strength (385 MPa) was obtained for two repetitive corrugation and straightening cycles sample.
Sheets of 5754-aluminum alloy processed by a modified repetitive corrugation and straightening (RCS) process were tested in order to measure their formability. For this purpose, forming limit curves were derived. They showed that the material forming capacity decreased after being processed by RCS. However, they kept good formability in the initial stages of the RCS process. The formability study was complemented with microstructural analysis (derivation of texture) and mechanical tests to obtain the strain-rate sensitivity. The texture analysis was done by employing X-ray diffraction, obtaining pole figures, and the orientation distribution function. It was noticed that the initial texture was conserved after successive RCS passes, but the intensity dropped. RCS process did not induce β-fiber, contrary to common deformation process. The strain-rate sensitivity coefficient was measured through tensile tests at different temperatures and strain rates; the coefficient of the samples processed after one and two passes were still relatively high, indicating the capacity to delay necking, in agreement with the good formability observed in the initial passes of the RCS process.
The enhanced mechanical properties obtained by refining the grain size down to the ultrafine-grained (UFG) regime have attracted considerable attention in recent years. The severe plastic deformation (SPD) techniques allow obtaining ultrafine-grained materials. Different SPD techniques permit processing sheet shape materials such as repetitive corrugation and straightening (RCS) and accumulative roll bonding (ARB). In this study, the formability of an AA 6061-T6 processed by RCS was evaluated. The forming limit diagrams (FLD) were obtained by Nakazima tests of samples in initial condition (T6 state) and after one and two RCS cycles. The FLD curves showed that the forming capacity decreased from the first RCS cycle. Likewise, uniaxial tensile tests at different temperatures and strain rates were conducted to analyze the effect of the RCS process on the strain rate sensitivity. They showed a relatively high strain rate sensitivity coefficient in the samples after one and two RCS cycles, which indicates an improvement of i) the capacity of the material to delay the onset of the necking and ii) the formability at increasing temperatures. Finally, texture analysis was carried out employing X-ray diffraction, calculating the orientation distribution functions (ODFs). The initial texture showed a predominant cube texture component, whereas, for further RCS cycles, a weakening of the cube texture and an increment of the S texture component were observed.
Liquid metal embrittlement (LME) is the embrittlement or the modification of the fracture behaviour of a metal or alloy when it undergoes plastic deformation while in contact with a liquid metal or liquid alloy. LME occurrence depends strongly on the properties of the metals involved and on the conditions of the mechanical stresses applied to the solid. The Small Punch Test (SPT) on flat specimens is very sensitive to identify the conditions of LME occurrence. Moreover, there are alternative SPT notched specimen geometries that have the potential to screen solid/liquid couples for sensibility to LME in different conditions. To study the apparition of the LME on an alpha brass with 30 wt% Zn in contact with the eGaIn (Ga-In eutectic), SPT at room temperature were carried out at different displacement rates and using three specimen types: the standard flat geometry and two notched geometries. While the flat specimens did not present LME, the presence of a notch and a high strain rate induced LME on the other specimen geometries. For these last specimens, the eGaIn modifies the SPT load-displacement curves at the crack propagation stage and changes the fracture to a partially ductile fracture followed by a brittle fracture.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.