This paper focuses on the development and demonstration of a novel blade morphing system within a whirl tower facility. The scope is to investigate the behavior of the proposed architecture under representative loads, demonstrating its capability to alter the blade original shape in operation under centrifugal, aerodynamic, and internal forces. The morphing concept was developed inside the European project “Shape Adaptive Blades for Rotorcraft Efficiency”, SABRE, and consists of a shape memory alloy system able to change the original twist law and, in this way, enhance rotor performance at certain specific regimes, such as hover and vertical flight. These phases, indeed, are generally penalized with respect to other more extended flight regimes (cruise). The work starts with an overview of the research in the field of morphing, with specific reference to the researches envisaging rotary wing demonstrations. Then, an overview of the morphing twist concept is provided, with particular attention paid to those features particularly suited for the whirl tower representative test environment. The laboratory characterization and commissioning operations are illustrated. Then, the task of the installation of the prototype on the whirl tower facility is described together with the testing modality adopted. Finally, the results of the test campaign are illustrated and critically discussed, providing the reader with insights and possible future steps to be taken in further research. The impact on the morphing capability of the following different parameters was investigated: the number of the prototype segments switched on, the speed and thus the centrifugal actions, and the angles of attack. The stiffening effect due to centrifugal actions was quantified through the measurement of the actual twist and the internal deformation. The link between speed, angle of attack at root, and twist and flap angles was also tracked, building a database useful for the comprehension of the phenomenon, and for the assessment of numerical predictive models. The achieved results highlighted the capability of the system to produce a twist angle matching the target of 8° per blade radius; this figure is related to a potential power saving of 10% in hover and vertical flight and an improvement of about 1% on the over-all efficiency of the rotorcraft.
In an innovative system, it is essential to keep under control the crucial development phases, which should consider several aspects involving, for instance, the modeling or the assessment of suitable analytical representations. Aiming to pursue a final demonstration to verify the actual capability of an engineering idea, however, some fundamental elements may have been partially considered. Many projects state the initial and final technology readiness level based on the famous scale introduced by the US National and Aeronautics Space Administration (NASA) many years ago and now widespread in many fields of technology innovation. Its nine-step definition provides a high-level indication of the maturity of the observed innovative system. Trivially, the resolution of that macroscopic meter is not made for catching advancement details, but it rather provides comprehensive information on the examined technology. It is, therefore, necessary to refer to more sophisticated analysis tools that can show a more accurate picture of the development stage and helps designers to highlight points that deserve further attention and deeper analysis. The risk is to perform a very good demonstration test that can miss generality and remain confined only to that specific experimental campaign. Moving on to these assumptions, the authors expose three realizations of theirs concerning aeronautic morphing systems, to the analysis of a well-assessed Technology Readiness Level instrument. The aim is to define the aspects to be further assessed, the aspect to be considered fully mature, and even aspects that could miss some elementary point to attain full maturation. Such studies are not so frequent in the literature, and the authors believe to give a valuable, yet preliminary, contribution to the engineering of breakthrough systems. Without losing generality, the paper refers to the 2.2 version of a tool set up by the US Air Force Research Laboratory (AFRL), and NASA, with the aim to standardize the evaluation process of the mentioned nine-step TRL.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.