Incubation of glutathione (GSH) depleted mouse erythrocytes with the oxidants phenylhydrazine, acrolein, divicine and isouramil resulted in the release of free iron and in lipid peroxidation and hemolysis. The addition of the flavonoid quercetin, which chelates iron and penetrates erythrocytes, resulted in remarkable protection against lipid peroxidation and hemolysis. The protection seems to be due to intracellular chelation of iron, since a semi-stoichiometric ratio between released iron and the amount of quercetin necessary to prevent lipid peroxidation and hemolysis was found. Incubation of GSH depleted human erythrocytes with divicine and isouramil did not induce lipid peroxidation and hemolysis in spite of a substantial release of iron. However, divicine and isouramil produced alterations of membrane proteins, such as spectrin and band 3, as well as formation of senescent cell antigen. The addition of quercetin prevented these alterations.
Mouse erythrocytes were incubated with oxidizing agents, phenylhydrazine, divicine and isouramil. With all the oxidants a rapid release of iron in a desferrioxamine (DFO)-chelatable form was seen and it was accompanied by methaemoglobin formation. If the erythrocytes were depleted of GSH by a short preincubation with diethyl maleate, the release of iron was accompanied by lipid peroxidation and, subsequently, haemolysis. GSH depletion by itself did not induce iron release, methaemoglobin formation, lipid peroxidation or haemolysis. Rather, the fate of the cell in which iron is released depended on the intracellular availability of GSH. In addition, iron release was higher in depleted cells than in native ones, suggesting a role for GSH in preventing iron release when oxidative stress is imposed by the oxidants. Iron release preceded lipid peroxidation. The latter was prevented when the erythrocytes were preloaded with DFO in such a way (preincubation with 10 mM-DFO) that the intracellular concentration was equivalent to that of the released iron, but not when the intracellular DFO was lower (preincubation with 0.1 mM-DFO). Extracellular DFO did not affect lipid peroxidation and haemolysis, suggesting again that the observed events occur intracellularly (intracellular chelation of released iron). The relevance of iron release from iron complexes in the mechanisms of cellular damage induced by oxidative stress is discussed.
Hydrogels containing alpha-amino acid residues (L-phenylalanine, L-histidine) were used to complex the chemotherapeutic agent cisplatin. The release of the drug in phosphate buffer solution showed an initial burst effect, followed by a near zero-order release phase over the seven days of reported period. Unlike the nonreleasing pattern of the hydrogel poly(N-acryloyl-L-phenylalanine-co-N-isopropylacrylamide) (CP2), the homopolymer poly(N-acryloyl-L-phenylalanine) (P9) hydrogel showed a released amount of cisplatin loaded from a water/DMSO mixture that was three times greater than that loaded from simple water. The hydrogel P9 formed with cisplatinum(II) complex species of well-defined stoichiometry; the drug species was released by a chemically controlled process. The Pt(II)/L (L is the monomeric unit of the polymer) stoichiometric molar ratio of 0.5, corresponding to two close carboxylate groups per Pt(II), was found by the viscometric data on the soluble polymer analogue. The platinum species released from cisplatin-loaded (from water) hydrogel retained its cytotoxic activity toward Me665/2/21 human melanoma cell line, in the same manner shown by the native cisplatin. On the contrary, the platinum species released from cisplatin-loaded (from water/DMSO) hydrogel was devoid of any cytotoxic effect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.