2 The opinions here expressed are solely those of the authors and do not represent in any way those of their employers. Acknowledgments: we are grateful to Cristin Buescu, Jean-Fran莽ois Chassagneux, Fran莽ois Delarue, Federico Graceffa, and Marek Rutkowski for helfpul discussion and suggestions that helped us improve the paper. Marek Rutkowski and Andrea Pallavicini visits were funded via the EPSRC Mathematics Platform grant EP/I019111/1.
We study conditions for existence, uniqueness, and invariance of the comprehensive nonlinear valuation equations first introduced in Pallavicini et al.(Funding valuation adjustment: a consistent framework including CVA, DVA, collateral, netting rules and re-hypothecation, 2011, [11]). These equations take the form of semi-linear PDEs and Forward-Backward Stochastic Differential Equations (FBSDEs). After summarizing the cash flows definitions allowing us to extend valuation to credit risk and default closeout, including collateral margining with possible re-hypothecation, and treasury funding costs, we show how such cash flows, when present-valued in an arbitrage-free setting, lead to semi-linear PDEs or more generally to FBSDEs. We provide conditions for existence and uniqueness of such solutions in a classical sense, discussing the role of the hedging strategy. We show an invariance theorem stating that even though we start from a risk-neutral valuation approach based on a locally risk-free bank account growing at a risk-free rate, our final valuation equations do not depend on the risk-free rate. Indeed, our final semi-linear PDE or FBSDEs and their classical solutions depend only on contractual, market or treasury rates and we do not need to proxy the risk-free rate with a real market rate, since it acts as an instrumental variable. The equations' derivations, their numerical solutions, the related XVA valuation adjustments with their overlap, and the invariance result had been analyzed numerically and extended to central clearing and multiple discount curves in a number of previous works, including Brigo and Pallavicini (J. Financ. Eng. 1(1):1-60 (2014)
We study conditions for existence, uniqueness and invariance of the comprehensive nonlinear valuation equations first introduced in Pallavicini et al (2011) [11]. These equations take the form of semi-linear PDEs and Forward-Backward Stochastic Differential Equations (FBSDEs). After summarizing the cash flows definitions allowing us to extend valuation to credit risk and default closeout, including collateral margining with possible re-hypothecation, and treasury funding costs, we show how such cash flows, when present-valued in an arbitrage free setting, lead to semi-linear PDEs or more generally to FBSDEs. We provide conditions for existence and uniqueness of such solutions in a viscosity and classical sense, discussing the role of the hedging strategy. We show an invariance theorem stating that even though we start from a risk-neutral valuation approach based on a locally risk-free bank account growing at a risk-free rate, our final valuation equations do not depend on the risk free rate. Indeed, our final semilinear PDE or FBSDEs and their classical or viscosity solutions depend only on contractual, market or treasury rates and we do not need to proxy the risk free rate with a real market rate, since it acts as an instrumental variable. The equations derivations, their numerical solutions, the related XVA valuation adjustments with their overlap, and the invariance result had been analyzed numerically and extended to central clearing and multiple discount curves in a number of previous works, including [11], [12], [10], [6] and [4].
We develop a unified valuation theory that incorporates credit risk (defaults), collateralization and funding costs, by expanding the replication approach to a generality that has not yet been studied previously and reaching valuation when replication is not assumed. This unifying theoretical framework clarifies the relationship between the two valuation approaches: the adjusted cash flows approach pioneered for example by Brigo, Pallavicini and co-authors ([12, 13, 34]) and the classic replication approach illustrated for example by 8]). In particular, results of this work cover most previous papers where the authors studied specific replication models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.