The unique region of the capsid protein VP1 (VP1u) of human parvovirus B19 (B19) elicits a dominant immune response and has a phospholipase A 2 (PLA 2 ) activity, which is necessary for the infection. In contrast to the rest of the parvoviruses, the VP1u of B19 is thought to occupy an external position in the virion, making this region a promising candidate for vaccine development. By using a monoclonal antibody against the most-N-terminal portion of VP1u, we revealed that this region rich in neutralizing epitopes is not accessible in native capsids. However, exposure of capsids to increasing temperatures or low pH led to its progressive accessibility without particle disassembly. Although unable to bind free virus or to block virus attachment to the cell, the anti-VP1u antibody was neutralizing, suggesting that the exposure of the epitope and the subsequent virus neutralization occur only after receptor attachment. The measurement of the VP1u-associated PLA 2 activity of B19 capsids revealed that this region is also internal but becomes exposed in heat-and in low-pH-treated particles. In sharp contrast to native virions, the VP1u of baculovirus-derived B19 capsids was readily accessible in the absence of any treatment. These results indicate that stretches of VP1u of native B19 capsids harboring neutralizing epitopes and essential functional motifs are not external to the capsid. However, a conformational change renders these regions accessible and triggers the PLA 2 potential of the virus. The results also emphasize major differences in the VP1u conformation between natural and recombinant particles.
Inactivation of B19V by heat or low pH is not mediated by capsid disintegration but by the conversion of the infectious virions into DNA-depleted capsids. The high instability of the viral DNA in its encapsidated state is an exclusive feature of B19V, which explains its lower resistance to inactivation treatments.
The bacterium Mycobacterium immunogenum has been implicated in causing the lung condition hypersensitivity pneumonitis (HP) in factory workers exposed to colonized metalworking fluids (MWFs). M. immunogenum-specific, real-time quantitative PCR detection technique (MiRT-qPCR) was implemented on a large scale to 363 MWFs of varying types, originating from the United States and Europe, that had been in use for between 30 days and 1 year. In MWFs that contained between 10(3) and 10(9) culturable general heterotrophs mL(-1) the technique detected between 5 and 2 × 10(6) mL(-1) M. immunogenum cell equivalents (CE) in 12.2% (23 of 189) of U.S. samples and between 8 and 6 × 10(5) mL(-1) CE in 39.1% (68 of 174) of samples from Europe. In contrast, only three cultured presumptive mycobacterial isolates across all samples were confirmed as M. immunogenum. Implementation of the assay demonstrated its practicality and further emphasized the limitations of using cultivation alone. Interestingly, no M. immunogenum were detected in mineral oil-based Bio-Concept MWFs from the United States, while it was more commonly detected in used MWFs based on formaldehyde-releasing biocides than in MWFs free of formaldehyde-depot biocides.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.