In this paper we present the application of an input-output inversion technique for the open-loop control of an overhead crane modelled as a double pendulum. The method is mathematically derived, obtaining a parametric trajectory that ensures reduced residual oscillations. Then, it is shown that the postactuation can be neglected so that the method can be implemented with standard industrial drives. The robustness of the method is evaluated by means of simulations, and the performance of the method is experimentally compared with the well-known input shaping technique. The advantages of using a double pendulum model instead of a simple pendulum one are also shown.
In this paper, a Model Predictive Control approach for the velocity control of operator-in-the loop overhead cranes is proposed. The operator can select the maximum position overshoot as a tuning parameter for the method. Simulations provide a comparison between the proposed method and the well known Zero Vibration input shaping technique, showing its effectiveness in controlling the payload oscillations.
This is the pre-peer reviewed version of the following article: MPC-PID control of operator-in-the-loop overhead cranes: A practical approach, which has been published in final form at 10.1109/ICoSC.2018.8587775. This article may be used for non-commercial purposes in accordance with Journal terms and conditions for Self-Archiving.
Model Predictive Control has been proved to enhance the control performance of overhead cranes. However, in Operator-In-the-Loop (OIL) overhead cranes the trajectory of the payload strongly depends on the runtime decisions of the user and can not be predicted beforehand. Simple assumptions on the future references evolution have therefore to be made. In this paper we investigate the applicability of linear and nonlinear MPC strategies to the case of OIL overhead cranes, based on different assumptions on the future evolution of the length of the hoisting cable.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.