The mountain portion of the Tennacola streambasin, which is located in the northeast sector of theSibillini Mountains (Central Apennines, Italy), has a largenumber of springs exploited for drinking water. The pres-ence of lithotypes with different hydraulic conductivityallowed the formation of two main groups of springs withdifferent discharge and regim e. This paper aims to providenew insights about the groundwater circulation withincarbonate and karst complexes. In detail a study based onspring hydrograph analysis using the MRC method and onthe main statistical parameters has been carried out, inorder to evaluate the main features related to the flow pathsand the main hydrogeol ogical properties of the aquifersstudied. The results allowed to characterize the mainhydrogeological features of the aquifers and to evaluate thedimension of the recharge areas
A new method was developed and implemented into an Excel Visual Basic for Applications (VBAs) algorithm utilizing trigonometry laws in an innovative way to overlap recession segments of time series and create master recession curves (MRCs). Based on a trigonometry approach, the algorithm horizontally translates succeeding recession segments of time series, placing their vertex, that is, the highest recorded value of each recession segment, directly onto the appropriate connection line defined by measurement points of a preceding recession segment. The new method and algorithm continues the development of methods and algorithms for the generation of MRC, where the first published method was based on a multiple linear/nonlinear regression model approach (Posavec et al. 2006). The newly developed trigonometry-based method was tested on real case study examples and compared with the previously published multiple linear/nonlinear regression model-based method. The results show that in some cases, that is, for some time series, the trigonometry-based method creates narrower overlaps of the recession segments, resulting in higher coefficients of determination R , while in other cases the multiple linear/nonlinear regression model-based method remains superior. The Excel VBA algorithm for modeling MRC using the trigonometry approach is implemented into a spreadsheet tool (MRCTools v3.0 written by and available from Kristijan Posavec, Zagreb, Croatia) containing the previously published VBA algorithms for MRC generation and separation. All algorithms within the MRCTools v3.0 are open access and available free of charge, supporting the idea of running science on available, open, and free of charge software.
A conceptual model related to a mountain aquifer that is characterized by a lack of data of hydrogeological parameters and boundary conditions, which were based on a single available observational dataset used for calibration, was studied using numerical models. For the first time, a preliminary spatial-temporal analysis has been applied to the study area in order to evaluate the real extension of the aquifer studied. The analysis was based on four models that were characterized by an increasing degree of complexity using a minimum of two zones and a maximum of five zones, which consequently increased the number of adjustable parameters from a minimum of 10 to a maximum of 22, calibrated using the parameter estimation code PEST. Statistical index and information criteria were calculated for each model, which showed comparable results; the information criteria indicated that the model with the low number of adjustable parameters was the optimal model. A comparison of the simulated and observed spring hydrographs showed a good shape correspondence but a general overestimation of the discharge, which indicated a good fit with the rainfall time series and a probably incorrect extension of the aquifer structure: the recharge contributes more than half of the total outflow at the springs but is not able to completely feed the springs.
This work is a significant contribution to knowledge of the Quaternary and pre-Quaternary morphogenesis of a wide sector of central Italy, from the Apennine chain to the Adriatic Sea. The goal is achieved through a careful analysis and interpretation of stratigraphic and tectonic data relating to marine and continental sediments and, mostly, through the study of relict limbs of ancient landscapes (erosional surfaces shaped by prevailing planation processes). The most important scientific datum is the definition of the time span in which the modelling of the oldest morphological element (the "summit relict surface") occurred: it started during Messinian in the westernmost portion and after a significant phase during middle-late Pliocene, ended in the early Pleistocene. During the middle and late Pleistocene, the rapid tectonic uplift of the area and the climate fluctuations favoured the deepening of the hydrographic network and the genesis of three orders of fluvial terraces, thus completing the fundamental features of the landscape. The subsequent Holocene evolution reshaped the minor elements, but not the basic ones.
The present paper shows the consequences of intense human activities carried out along the river beds mostly during the XX century. There have been many attempts to quantitatively correlate river incision and suspended/bed load reduction following the construction of river dams, while there are few approaches that take into account the effects of gravel quarrying from the river beds. Using data from several rivers of central and northern Italy and in Europe, a new simple empirical relation, was formulated in order to establish a possible relation between the fluvial erosion capacity consequent to quarrying and the amount of fluvial incision. The preliminary results are very encouraging even though, due to the limited number of available data, the relation needs to be further tested.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.