Background: Programmed death 1 (PD-1) is an immunologic checkpoint that limits immune responses by delivering potent inhibitory signals to T cells on interaction with specific ligands expressed on tumor/virus-infected cells, thus contributing to immune escape mechanisms. Therapeutic PD-1 blockade has been shown to mediate tumor eradication with impressive clinical results. Little is known about the expression/function of PD-1 on human natural killer (NK) cells. Objective: We sought to clarify whether human NK cells can express PD-1 and analyze their phenotypic/functional features. Methods: We performed multiparametric cytofluorimetric analysis of PD-1 1 NK cells and their functional characterization using degranulation, cytokine production, and proliferation assays. Results: We provide unequivocal evidence that PD-1 is highly expressed (PD-1 bright ) on an NK cell subset detectable in the peripheral blood of approximately one fourth of healthy subjects. These donors are always serologically positive for human cytomegalovirus. PD-1 is expressed by CD56 dim but not CD56 bright NK cells and is confined to fully mature NK cells characterized by the NKG2A 2 KIR 1 CD57 1 phenotype. Proportions of PD-1 bright NK cells were higher in the ascites of a cohort of patients with ovarian carcinoma, suggesting their
Because of their potent antitumor activity and their proinflammatory role, natural killer (NK) cells are at the forefront of efforts to develop immuno-oncologic treatments. NK cells participate in immune responses to tumors by killing target cells and producing cytokines. However, in the immunosuppressive tumor microenvironment, NK cells become dysfunctional through exposure to inhibitory molecules produced by cancer cells, leading to tumor escape. We provide an overview of what is known about NK tumor infiltration and surveillance and about the mechanisms by which NK cells become dysfunctional. Significance: The functions of tumor-infiltrating NK cells may be impaired. This review aims to describe the various mechanisms by which tumors alter NK-cell functions.
The identification of inhibitory NK cell receptors specific for HLA-I molecules (KIRs and NKG2A) provided the molecular basis for clarifying the mechanism by which NK cells kill transformed cells while sparing normal cells. The direct interactions between inhibitory NK cell receptors and their HLA-I ligands enable NK cells to distinguish healthy from transformed cells, which frequently show an altered expression of HLA-I molecules. Indeed, NK cells can kill cancer cells that have lost, or under express, HLA-I molecules, but not cells maintaining their expression. In this last case, it is possible to use anti-KIR or anti-NKG2A monoclonal antibodies to block the inhibitory signals generated by these receptors and to restore the anti-tumor NK cell activity. These treatments fall within the context of the new immunotherapeutic strategies known as “immune checkpoint blockade.” These antibodies are currently used in clinical trials in the treatment of both hematological and solid tumors. However, a more complex scenario has recently emerged. For example, NK cells can also express additional immune checkpoints, including PD-1, that was originally described on T lymphocytes, and whose ligands (PD-Ls) are usually overexpressed on tumor cells. Thus, it appears that the activation of NK cells and their potentially harmful effector functions are under the control of different immune checkpoints and their simultaneous expression could provide additional levels of suppression to anti-tumor NK cell responses. This review is focused on PD-1 immune checkpoint in NK cells, its potential role in immunosuppression, and the therapeutic strategies to recover NK cell cytotoxicity and anti-tumor effect.
Group 3 innate lymphoid cells (ILC3) have been detected in both murine and human decidual tissues where they are thought to play a relevant role in the induction and maintenance of pregnancy. However, limited information exists on the molecular mechanisms that regulate these cells, including immune checkpoints. Here, we show that ILC3 express the inhibitory checkpoints programmed cell death (PD-1) and T cell immunoglobulin and mucin domain containing protein 3 (TIM-3) during the first trimester of pregnancy and that these receptors could regulate production of cytokines, including IL-22, IL-8, and TNF-α, induced by IL-23. We also show that the intermediate extravillous trophoblast (iEVT) expresses high levels of the PD-1-ligand PD-L1, suggesting that PD-1/PD-L1 interaction may regulate ILC3 function at the feto-maternal interface. Our present data provide the first evidence that human decidual ILC3 express a functional PD-1. It is possible that an altered expression or function of PD-1 may break the immunetolerance resulting in pregnancy failure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.