The paper is aimed at discussing and fixing issues in providing a generalized approach to the simulation of sulfur recovery units (SRUs). The main goal is to get a simulation that is at the same time (i) reasonably detailed and robust to properly characterize SRUs and (ii) so generalized to provide a tool that is not only specific for the case in study. To achieve point (i), standard libraries belonging to commercial process simulators are coupled to specific heuristic relations coming from the industrial experience for modeling the thermal furnace and the catalytic Claus converters; this allows us to infer with a certain reliability those measures that are often missing or unavailable online in these processes. To achieve point (ii), a series of adaptive parameters are filled in the process simulation by making it more flexible and yet preserving all model details. The most recent techniques and numerical methods, to tune the adaptive simulation parameters, are implemented in Visual C++ and interfaced to PRO/II (by SimSci-Esscor) to obtain a robust parameter estimation solved by means of the BzzMath library. At last, the detailed and tuned adaptive simulation is validated along a period of 2 months on a large-scale SRU (TECHNIP-KTI SpA technology) operating in Italy.
Driving simulators are widely used for understanding human–machine interaction, driver behavior and in driver training. The effectiveness of simulators in this process depends largely on their ability to generate realistic motion cues. Though the conventional filter-based motion-cueing strategies have provided reasonable results, these methods suffer from poor workspace management. To address this issue, linear MPC-based strategies have been applied in the past. However, since the kinematics of the motion platform itself is nonlinear and the required motion varies with the driving conditions, this approach tends to produce sub-optimal results. This paper presents a nonlinear MPC-based algorithm which incorporates the nonlinear kinematics of the Stewart platform within the MPC algorithm in order to increase the cueing fidelity and use maximum workspace. Furthermore, adaptive weights-based tuning is used to smooth the movement of the platform towards its physical limits. Full-track simulations were carried out and performance indicators were defined to objectively compare the response of the proposed algorithm with classical washout filter and linear MPC-based algorithms. The results indicate a better reference tracking with lower root mean square error and higher shape correlation for the proposed algorithm. Lastly, the effect of the adaptive weights-based tuning was also observed in the form of smoother actuator movements and better workspace use.
The paper deals with the integrated solution of different model-based optimization levels to face the problem of inferring and reconciling online plant measurements practically, under the condition of poor measure redundancy, because of a lack of instrumentation installed in the field. The novelty of the proposed computer-aided process engineering (CAPE) solution is in the simultaneous integration of different optimization levels: (i) the data reconciliation based on a detailed process simulation; (ii) the introduction and estimation of certain adaptive parameters, to match the current process conditions as well as to confer a certain generality on it; and (iii) the use of a set of efficient optimizers to improve plant operations. The online feasibility of the proposed CAPE solution is validated on a large-scale sulfur recovery unit (SRU) of an oil refinery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.