Mucor circinelloides is a dimorphic fungus used to study cell differentiation that has emerged as a model to characterize mucormycosis. In this work, we identified four ADP-ribosylation factor (Arf)-encoding genes (arf1-arf4) and study their role in the morphogenesis and virulence. Arfs are key regulators of the vesicular trafficking process and are associated with both growth and virulence in fungi. Arf1 and Arf2 share 96% identity and Arf3 and Arf4 share 89% identity, which suggests that the genes arose through gene-duplication events in M. circinelloides. Transcription analysis revealed that certain arf genes are affected by dimorphism of M. circinelloides, such as the arf2 transcript, which was accumulated during yeast development. Therefore, we created knockout mutants of four arf genes to evaluate their function in dimorphism and virulence. We found that both arf1 and arf2 are required for sporulation, but these genes also perform distinct functions; arf2 participates in yeast development, whereas arf1 is involved in aerobic growth. Conversely, arf3 and arf4 play only minor roles during aerobic growth. Moreover, we observed that all single arf-mutant strains are more virulent than the wild-type strain in mouse and nematode models, with the arf3 mutant being most virulent. Lastly, arf1/arf2 and arf3/arf4 double mutations produced heterokaryon strains that did not reach the homokaryotic state, indicating that these genes participate in essential and redundant functions. Overall, this work reveals that Arfs proteins regulate important cellular processes in M. circinelloides such as morphogenesis and virulence, laying the foundation to characterize the molecular networks underlying this regulation.
Mucor circinelloides is a dimorphic fungal model for studying several biological processes including cell differentiation (yeast-mold transitions) as well as biodiesel and carotene production. The recent release of the first draft sequence of the M. circinelloides genome, combined with the availability of analytical methods to determine patterns of gene expression, such as quantitative Reverse transcription-Polymerase chain reaction (qRT-PCR), and the development of molecular genetic tools for the manipulation of the fungus, may help identify M. circinelloides gene products and analyze their relevance in different biological processes. However, no information is available on M. circinelloides genes of stable expression that could serve as internal references in qRT-PCR analyses. One approach to solve this problem consists in the use of housekeeping genes as internal references. However, validation of the usability of these reference genes is a fundamental step prior to initiating qRT-PCR assays. This work evaluates expression of several constitutive genes by qRT-PCR throughout the morphological differentiation stages of M. circinelloides; our results indicate that tfc-1 and ef-1 are the most stable genes for qRT-PCR assays during differentiation studies and they are proposed as reference genes to carry out gene expression studies in this fungus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.