Detailed chemical kinetic modeling has been performed to investigate aromatic and polyaromatic hydrocarbon formation pathways in rich, sooting, methane and ethane premixed flames. An atmospheric pressure, laminar flat flame operated at an equivalence ratio of 2.5 was used to acquire experimental data for model validation. Gas composition analysis was conducted by an on-line gas chromatograph / mass spectrometer technique. Measurements were made in the flame and post-flame zone for a number of low molecular weight species, aliphatics, aromatics, and polycyclic aromatic hydrocarbons (PAHs) ranging from two to five-aromatic fused rings.The modeling results show the key reaction sequences leading to aromatic and polycyclic aromatic hydrocarbon formation primarily involve the combination of resonantly stabilized radicals. In particular, propargyl and I-methylallenyl combination reactions lead to benzene and methyl substituted benzene formation, while polycyclic aromatics are formed from cyclopentadienyl and fused rings that have a shared C, side structure. Naphthalene production through the reaction step of cyclopentadienyl self-combination, and phenanthrene formation from indenyl and cyclopentadienyl combination were shown to be important in the flame modeling study. The removal of phenyl by Ozleading to cyclopentadienyl formation isexpccted to playa pivotal role in the PAH or soot precursor growth process under fuel-rich oxidation conditions.
Experimental and detailed chemical kinetic modeling has been performed to investigate aromatic and polycyclic aromatic hydrocarbon (PAH) formation pathways in a premixed, rich, sooting, propane-oxygen-argon burner stabilized flame. An atmospheric pressure, laminar flat flame operated at an equivalence ratio of2.6 was used to acquire experimental data for model validation. Gas composition analysis was conducted by an on-line gas chromatograph/mass spectrometer (GC/MS) technique. Measurements were made in the main reaction and post-reaction zones for a number of low molecular weight species, aliphatics, aromatics, and polycyclic aromatic hydrocarbons (PAHs) ranging from two to five-fused aromatic rings.Reaction flux and sensitivity analysis were used to help identify the important reaction sequences leading to aromatic and PAH growth and destruction in the propane flame. Benzene formation was shown to be dominated by the propargyl recombination reaction. A secondary benzene formation pathway occurred from the reaction sequence of allyl plus propargylleading to fulvenc and H-atoms whereupon the fulvene is converted to benzene by H-atom catalysis.Large negative sensitivity coefficients were calculated for the H,CCCH + H-CJH, + H, reaction in the propargyl, benzene, and naphthalene sensitivity analysis study. This result implicates propargyl consumption by H-atoms as an important reaction step that limits aromatic and PAH growth.Naphthalene formation through the reaction step of cyclopentadienyl self-combination and phenanthrene formation from indenyl and cyclopentadienyl combination were shown to be plausible global reaction steps for PAH production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.