Humans are increasingly coming into direct physical contact with robots in the context of object handovers. The technical development of robots is progressing so that handovers can be better adapted to humans. An important criterion for successful handovers between robots and humans is the predictability of the robot for the human. The better humans can anticipate the robot’s actions, the better they can adapt to them and thus achieve smoother handovers. In the context of this work, it was investigated whether a highly adaptive transport method of the object, adapted to the human hand, leads to better handovers than a non-adaptive transport method with a predefined target position. To ensure robust handovers at high repetition rates, a Franka Panda robotic arm with a gripper equipped with an Intel RealSense camera and capacitive proximity sensors in the gripper was used. To investigate the handover behavior, a study was conducted with n = 40 subjects, each performing 40 handovers in four consecutive runs. The dependent variables examined are physical handover time, early handover intervention before the robot reaches its target position, and subjects’ subjective ratings. The adaptive transport method does not result in significantly higher mean physical handover times than the non-adaptive transport method. The non-adaptive transport method does not lead to a significantly earlier handover intervention in the course of the runs than the adaptive transport method. Trust in the robot and the perception of safety are rated significantly lower for the adaptive transport method than for the non-adaptive transport method. The physical handover time decreases significantly for both transport methods within the first two runs. For both transport methods, the percentage of handovers with a physical handover time between 0.1 and 0.2 s increases sharply, while the percentage of handovers with a physical handover time of >0.5 s decreases sharply. The results can be explained by theories of motor learning. From the experience of this study, an increased understanding of motor learning and adaptation in the context of human-robot interaction can be of great benefit for further technical development in robotics and for the industrial use of robots.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.