We report on a femtosecond fiber laser system comprising four coherently combined large-pitch fibers as the main amplifier. With this system, a pulse energy of 1.3 mJ and a peak power of 1.8 GW are achieved at 400 kHz repetition rate. The corresponding average output power is as high as 530 W. Additionally, an excellent beam quality and efficiency of the combination have been obtained. To the best of our knowledge, such a parameter combination, i.e., gigawatt pulses with half a kilowatt average power, has not been demonstrated so far with any other laser architecture.
Few-cycle lasers are essential for many research areas such as attosecond physics that promise to address fundamental questions in science and technology. Therefore, further advancements are connected to significant progress in the underlying laser technology. Here, two-stage nonlinear compression of a 660 W femtosecond fiber laser system is utilized to achieve unprecedented average power levels of energetic ultrashort or even few-cycle laser pulses. In a first compression step, 408 W, 320 μJ, 30 fs pulses are achieved, which can be further compressed to 216 W, 170 μJ, 6.3 fs pulses in a second compression stage. To the best of our knowledge, this is the highest average power few-cycle laser system presented so far. It is expected to significantly advance the fields of high harmonic generation and attosecond science.
An ultrafast fiber chirped-pulse amplifier comprising eight coherently combined amplifier channels is presented. The laser delivers 1 kW average power at 1 mJ pulse energy and 260 fs pulse duration. Excellent beam quality and low-noise performance are confirmed. The laser has proven suitable for demanding scientific applications. Further power scaling is possible right away using even more amplifier channels.
In this Letter, we report on a femtosecond fiber chirped-pulse-amplification system based on the coherent combination of the output of four ytterbium-doped large-pitch fibers. Each single channel delivers a peak power of about 6.2 GW after compression. The combined system emits 200 fs long pulses with a pulse energy of 5.7 mJ at 230 W of average power together with an excellent beam quality. The resulting peak power is 22 GW, which to the best of our knowledge is the highest value directly emitted from any fiber-based laser system.
An ultrafast fiber-chirped-pulse amplification system using a combination of spatial and temporal coherent pulse combination is presented. By distributing the amplification among eight amplifier channels and four pulse replicas, up to 12 mJ pulse energy with 700 W average power and 262 fs pulse duration have been obtained with a system efficiency of 78% and excellent beam quality. To the best of our knowledge, this is the highest energy achieved by an ultrafast fiber-based laser system to date.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.