Image enhancement as a problem-oriented process of optimizing visual appearances to provide easier-toprocess input to automated image processing techniques is an area that will consistently be a companion to computer vision despite advances in image acquisition and its relevance continues to grow. For our systematic literature review, we consider the major peer-reviewed journals and conference papers on the state of the art in machine learning-based computer vision approaches for image enhancement. We describe the image enhancement methods relevant to our work and introduce the machine learning models used. We then provide a comprehensive overview of the different application areas and formulate research gaps for future scientific work on machine learning based computer vision approaches for image enhancement based on our results
The rapid growth in popularity of Deep Learning (DL) continues to bring more use cases and opportunities, with methods rapidly evolving and new fields developing from the convergence of different algorithms. For this systematic literature review, we considered the most relevant peer-reviewed journals and conference papers on the state of the art of various Ensemble Learning (EL) methods for application in DL, which are also expected to give rise to new ones in combination. The EL methods relevant to this work are described in detail and the respective popular combination strategies as well as the individual tuning and averaging procedures are presented. A comprehensive overview of the various limitations of EL is then provided, culminating in the final formulation of research gaps for future scholarly work on the results, which is the goal of this thesis. This work fills the research gap for upcoming work in EL for by proving in detail and making accessible the fundamental properties of the chosen methods, which will further deepen the understanding of the complex topic in the future and, following the maxim of ensemble learning, should enable better results through an ensemble of knowledge in the future.
In recent years, augmented reality (AR) technology has been able to demonstrate more and more impressively the potential it brings for companies and their valueadding activities, and this even though acceptance of the technology in society is only just beginning. Due to this, our work aims to bring a comprehensive overview of AR deployment opportunities based on the value chain, forcing a symbiosis of potential demonstration and acceptance promotion. For our investigation, we consider the most important peer-reviewed papers on the state of research on augmented reality from a business perspective and provide a comprehensive overview of the different possible uses of AR within a company, structured according to Porter’s value chain, as well as an outlook on future research on the expansion and further development of AR systems. Based on this, we formulate research gaps for future work on AR in the context presented.
This work demonstrates that a transfer learning-based deep learning model can perform unambiguous classification based on microscopic images of material surfaces with a high degree of accuracy. A transfer learning-enhanced deep learning model was successfully used in combination with an innovative approach for eliminating noisy data based on automatic selection using pixel sum values, which was refined over different epochs to develop and evaluate an effective model for classifying microscopy images. The deep learning model evaluated achieved 91.54% accuracy with the dataset used and set new standards with the method applied. In addition, care was taken to achieve a balance between accuracy and robustness with respect to the model. Based on this scientific report, a means of identifying microscopy images could evolve to support material identification, suggesting a potential application in the domain of materials science and engineering.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.