The current study aims to investigate the influence of iron minerals on the amorphous phase content, compressive strengths and the microstructural properties of the geopolymer materials. Geopolymer materials were prepared by the substitution of metakaolin by 10 and 20 wt.% of each iron mineral sample. Sodium waterglass from rice husk ash was used as a hardener, and metakaolin was used as an aluminosilicate source. The X-ray patterns show that the iron minerals denoted FR and FB are associated with hematite and magnetite, respectively. FY contains goethite together with a significant content of kaolinite and quartz. It is observed in the XRD patterns and FTIR absorption spectra that the additions of hematite, magnetite and goethite remain largely unreacted in the geopolymer binder. The compressive strengths of the related geopolymer composites show some significant variations indicating certain effects for mechanical stability obtained: 10 wt.% replacement of metakaolin by hematite increased the compressive strength from 51.1 to 55.5 MPa, while 20 wt.% hematite caused a decrease to 44.9 MPa. Furthermore, 10 and 20 wt.% replacement with FB revealed decreased values 47.0 and 40.3 MPa, respectively. It was also found that 10 and 20 wt.% of FY caused lower values of 30.9 and 39.1 MPa, respectively. The micrographs of geopolymer materials present some voids and cracks. The denser matrix is related to a superior gel formation producing a better glue between the crystalline additions. The unsubstituted geopolymer sample provides with about 50% the highest X-ray-amorphous content, whereas the substituted samples range between 35 and 45%, indicating systematically smaller gel contents without any clear trend with the compressive strength variation, however. The strength dependencies reveal more complex interaction between the gel and crystalline additions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.