Cryptocurrencies are more and more used in official cash flows and exchange of goods. Bitcoin and the underlying blockchain technology have been looked at by big companies that are adopting and investing in this technology. The CRIX Index of cryptocurrencies hu.berlin/CRIX indicates a wider acceptance of cryptos. One reason for its prosperity certainly being a security aspect, since the underlying network of cryptos is decentralized. It is also unregulated and highly volatile, making the risk assessment at any given moment difficult. In message boards one finds a huge source of information in the form of unstructured text written by e.g. Bitcoin developers and investors. We collect from a popular crypto currency message board texts, user information and associated time stamps. We then provide an indicator for fraudulent schemes. This indicator is constructed using dynamic topic modelling, text mining and unsupervised machine learning. We study how opinions and the evolution of topics are connected with big events in the cryptocurrency universe. Furthermore, the predictive power of these techniques are investigated, comparing the results to known events in the cryptocurrency space. We also test hypothesis of self-fulling prophecies and herding behaviour using the results.JEL classification: C19, G09, G10
Cryptocurrencies are more and more used in official cash flows and exchange of goods. Bitcoin and the underlying blockchain technology have been looked at by big companies that are adopting and investing in this technology. The CRIX Index of cryptocurrencies hu.berlin/CRIX indicates a wider acceptance of cryptos. One reason for its prosperity certainly being a security aspect, since the underlying network of cryptos is decentralized. It is also unregulated and highly volatile, making the risk assessment at any given moment difficult. In message boards one finds a huge source of information in the form of unstructured text written by e.g. Bitcoin developers and investors. We collect from a popular crypto currency message board texts, user information and associated time stamps. We then provide an indicator for fraudulent schemes. This indicator is constructed using dynamic topic modelling, text mining and unsupervised machine learning. We study how opinions and the evolution of topics are connected with big events in the cryptocurrency universe. Furthermore, the predictive power of these techniques are investigated, comparing the results to known events in the cryptocurrency space. We also test hypothesis of self-fulling prophecies and herding behaviour using the results.JEL classification: C19, G09, G10
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.