In this paper we define a discrete dynamical system that governs the evolution of a population of agents. From the dynamical system, a variant of Differential Evolution is derived. It is then demonstrated that, under some assumptions on the differential mutation strategy and on the local structure of the objective function, the proposed dynamical system has fixed points towards which it converges with probability one for an infinite number of generations. This property is used to derive an algorithm that performs better than standard Differential Evolution on some space trajectory optimization problems. The novel algorithm is then extended with a guided restart procedure that further increases the performance, reducing the probability of stagnation in deceptive local minima.
Starting from an algorithm recently proposed by Pullan and Hoos, we formulate and analyze iterated local search algorithms for the maximum clique problem. The basic components of such algorithms are a fast neighbourhood search (not based on node evaluation but on completely random selection) and simple, yet very effective, diversification techniques and restart rules. A detailed computational study is performed in order to identify strengths and weaknesses of the proposed algorithms and the role of the different components on several classes of instances. The tested algorithms are very fast and reliable: most of the DIMACS benchmark instances are solved within very short CPU times. For one of the hardest tests, a new putative optimum was discovered by one of our algorithms. Very good performances were also shown on recently proposed and more difficult instances. It is important to remark that the heuristics tested in this paper are basically parameter free (the appropriate value for the unique parameter is easily identified and was, in fact, the same value for all problem instances used in this paper).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.