In the presence of hydrogen donor solvents and at elevated temperatures, aromatic ketones can be selectively deoxygenated to the corresponding hydroaromatic compounds. The kinetics for reduction of 7H-benz[d,e]anthracen-7-one (benzanthrone, 6) into 7H-benz[d,e]anthracene (benzanthrene, 1) in 9,10-dihydroanthracene (3) solvent has been investigated in detail. The relatively slow hydrogenation of 6 is due to reversibility of the initial hydrogen-transfer step according to a reverse radical disproportionation (RRD). The dynamics could well be rationalized using the energetics of species computed by density functional theory (DFT). The application of hydrogen donors such as 1 as a hydrogen-transfer agent, although favorable in terms of a low benzylic carbon-hydrogen bond dissociation enthalpy, is limited due to the slow self-hydrogenation, which in case of 1 gives 5,6-dihydro-4H-benz[d,e]anthracene (7).
ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 100 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a “Full Text” option. The original article is trackable via the “References” option.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.