The synthesis of a series of cyclometalated gold(III) complexes
supported by pyrazine-based (C^N^C)-type pincer ligands is reported,
including the crystal structure of a cationic example. The compounds
provide a new platform for the study of antiproliferative properties
of gold(III) complexes. Seven complexes were tested: the neutral series
(C^Npz^C)AuX [X = Cl (1), 6-thioguanine (4), C≡CPh (5), SPh (6)] and
an ionic series that included the N-methyl complex
[(C^NpzMe^C)AuCl]BF4 (7) and the
N-heterocyclic carbene complexes [(C^Npz^C)AuL]+ with L = 1,3-dimethylbenzimidazol-2-ylidene (2) or
1,3,7,9-tetramethylxanthin-8-ylidene (3). Tests against
human leukemia cells identified 1, 2, 3, and 4 as particularly promising, whereas protecting
the noncoordinated N atom on the pyrazine ring by methylation (as
in 7) reduced the cytotoxicity. Complex 2 proved to be the most effective of the entire series against the
HL60 leukemia, MCF-7 breast cancer, and A549 lung cancer cell lines,
with IC50 values down to submicromolar levels, associated
with a lower toxicity toward healthy human lung fibroblast cells.
The benzimidazolylidene complex 2 accumulated more effectively
in human lung cancer cells than its caffeine-based analogue 3 and the gold(III) chloride 1. Compound 2 proved to be unaffected by glutathione under physiological
conditions for periods of up to 6 days and stabilizes the DNA G-quadruplex
and i-motif structures; the latter is the first such report for gold
compounds. We also show the first evidence of inhibition of MDM2–p53
protein–protein interactions by a gold-based compound and identified
the binding mode of the compound with MDM2 using saturation transfer
difference NMR spectroscopy combined with docking calculations.
Previous studies on the natural product chlorofusin have shown that the full peptide and azaphilone structure are required for inhibition of the interaction between MDM2 and p53. In the current work, we utilized the cyclic peptide as a template and introduced an azidonorvaline amino acid in place of the ornithine/azaphilone of the natural product and carried out click chemistry with the resulting peptide. From this small library the first ever non-azaphilone containing chlorofusin analogue with MDM2/p53 activity was identified. Further studies then suggested that the simple structure of the Fmoc-norvaline amino acid that had undergone a click reaction was also able to inhibit MDM2/p53 interaction. This is an example where studies of a natural product have led to the serendipitous identification of a new small molecule inhibitor of a protein-protein interaction
Development of selective hDM2/X p53 inhibitors is key to further develop this anticancer target. This method displayed a 50% success rate and identified hDMX selective compounds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.