In patients receiving hemodialysis, it has long been recognized that much more bicarbonate is delivered during treatment than ultimately appears in the blood. To gain insight into this mystery, we developed a model that allows a quantitative analysis of the patient's response to rapid alkalinization during hemodialysis. Our model is unique in that it is based on the distribution of bicarbonate in the extracellular fluid and assesses its removal from this compartment by mobilization of protons (H ) from buffers and other sources. The model was used to analyze the pattern of rise in blood bicarbonate concentration ([HCO ]), calculated from measurements of pH and PCO , in patients receiving standard bicarbonate hemodialysis. Model analysis demonstrated two striking findings: (1) 35% of the bicarbonate added during hemodialysis was due to influx and metabolism of acetate, despite its low concentration in the bath solution, because of the rapidly collapsing gradient for bicarbonate influx. (2) Almost 90% of the bicarbonate delivered to the patients was neutralized by H generation. Virtually all the new H came from intracellular sources and included both buffering and organic acid production. The small amount of added bicarbonate retained in the extracellular fluid increased blood [HCO ], on average, by 6 mEq/L in our patients. Almost all this rise occurred during the first 2 hours. Thereafter, blood [HCO ] changed minimally and always remained less than bath [HCO ]. This lack of equilibrium was due to the continued production of organic acid. Release of H from buffers is a reversible physiological response, restoring body alkali stores. By contrast, organic acid production is an irreversible process during hemodialysis and is metabolically inefficient and potentially catabolic. Our analysis underscores the need to develop new approaches for alkali repletion during hemodialysis that minimize organic acid production.
Respiratory acid-base disorders are an important component of the acid-base abnormalities seen in hemodialysis patients and are not identified by measuring total CO 2 concentration; hence, complete acid-base measurements are needed to determine the components of hemodialysis patients' acid-base status that are contributing to mortality risk.
As the name reveals, acetate-free biofiltration (AFB) is featured by lack of acetate and this would seem to allow better hemodynamic stability. However, AFB also has a unique characteristic of carbon dioxide (CO2 )-free dialysate, whereas all other modern dialysis techniques imply an overload of CO2 from dialysate to the patient. This notwithstanding the role of CO2 in tolerance to dialysis treatment, both AFB and all other dialysis techniques seem not investigated in due depth. Specifically, the amount of CO2 coming back to the patient's bloodstream during AFB and bicarbonate dialysis (BD) is unknown. We measured partial pressure of CO2 (pCO2 ) in blood samples withdrawn from the venous line of the extracorporeal circuit during BD and subsequently during AFB in 22 stable chronic hemodialysis outpatients. The amount of CO2 coming back to the patient's bloodstream is higher in BD (59.1 ± 4.0 mmol/L) than in AFB (42.8 ± 4.5 mmol/L, P < 0.0001). Such difference exceeds 30%. Moreover, shifting from BD to AFB shows, notably for each patient, the reduction of pCO2 toward physiological values. BD implies CO2 overload from dialysate, whereas AFB does not. Further studies are required to evaluate if AFB would be the most appropriate dialysis technique in patients affected by chronic, but especially acute, lung diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.