We developed a Kemp's ridley (Lepidochelys kempii) stock assessment model to evaluate the relative contributions of conservation efforts and other factors toward this critically endangered species' recovery. The Kemp's ridley demographic model developed by the Turtle Expert Working Group (TEWG) in 1998 and 2000 and updated for the binational recovery plan in 2011 was modified for use as our base model. The TEWG model uses indices of the annual reproductive population (number of nests) and hatchling recruitment to predict future annual numbers of nests on the basis of a series of assumptions regarding age and maturity, remigration interval, sex ratios, nests per female, juvenile mortality, and a putative ''turtle excluder device effect'' multiplier starting in 1990. This multiplier was necessary to fit the number of nests observed in 1990 and later. We added the effects of shrimping effort directly, modified by habitat weightings, as a proxy for all sources of anthropogenic mortality. Additional data included in our model were incremental growth of Kemp's ridleys marked and recaptured in the Gulf of Mexico, and the length frequency of stranded Kemp's ridleys. We also added a 2010 mortality factor that was necessary to fit the number of nests for 2010 and later (2011 and 2012). Last, we used an empirical basis for estimating natural mortality, on the basis of a Lorenzen mortality curve and growth estimates. Although our model generated reasonable estimates of annual total turtle deaths attributable to shrimp trawling, as well as additional deaths due to undetermined anthropogenic causes in 2010, we were unable to provide a clear explanation for the observed increase in the number of stranded Kemp's ridleys in recent years, and subsequent disruption of the species' exponential growth since the 2009 nesting season. Our consensus is that expanded data collection at the nesting beaches is needed and of high priority, and that 2015 be targeted for the next stock assessment to evaluate the 2010 event using more recent nesting and in-water data.
IntroductionThe rapid increase in sea-water temperatures and frequency of extreme thermal events have amplified the risk of functional extinction of Mediterranean species such as the endemic long-lived seagrass Posidonia oceanica. Because of the valuable ecological functions and ecosystem services the species provides, understanding the life-stage specific thermal vulnerability is crucial to accurately predict the consequences of current and future global climate change and to protect and conserve existing meadows.MethodsTo this end, here we report a study on the ontogeny-specific thermal sensitivity of important physiological functions (i.e. respiration and net production) of three different early life history stages of P. oceanica, namely seed, seedling (4-month-old individuals) and 16-month-old plantlet by measuring thermal performance curves (eleven temperatures treatments between 15-36°C with n=8).ResultsAll three stages examined showed photosynthetic activity during light exposure with similar optimal temperatures for both net and gross production. Gross photosynthesis increased with rising temperature up to 28-30°C, subsequently declining at higher temperatures until complete inhibition at 36°C. The metabolic response of seeds was found to be temperature-dependent up to 26°C, while respiration of seedlings and plantlets was almost stable up to 28-30°C, but increased markedly at higher temperatures, resulting in a negative whole-plant C balance at temperatures above 32°C. Overall, our results show that seedlings and plantlets tolerate a wider temperature range (15 - 32°C) than seeds, which experience metabolic and physiological dysfunction from 26-28°C onwards.DiscussionThese findings suggest that the impact of warming on recruitment in P. oceanica meadows may vary depending on the timing of marine heatwaves (i.e. mid-spring to mid-autumn) and provide useful knowledge to inform restoration programs using early life stages of the species. In conclusion, the study of physiological responses during the early life stages of species is key to identify life history stages that are particularly vulnerable to climate change, which is vital knowledge for ecosystem management and conservation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.