Being heavily dependent to oil products (mainly gasoline and diesel), the French transport sector is the main emitter of Particulate Matter (PMs) whose critical levels induce harmful health effects for urban inhabitants. We selected three major French cities (Paris, Lyon, and Marseille) to investigate the relationship between the Coronavirus Disease 19 (COVID-19) outbreak and air pollution. Using Artificial Neural Networks (ANNs) experiments, we have determined the concentration of PM
2.5
and PM
10
linked to COVID-19-related deaths. Our focus is on the potential effects of Particulate Matter (PM) in spreading the epidemic. The underlying hypothesis is that a pre-determined particulate concentration can foster COVID-19 and make the respiratory system more susceptible to this infection. The empirical strategy used an innovative Machine Learning (ML) methodology. In particular, through the so-called cutting technique in ANNs, we found new threshold levels of PM
2.5
and PM
10
connected to COVID-19: 17.4 µg/m
3
(PM
2.5
) and 29.6 µg/m
3
(PM
10
) for Paris; 15.6 µg/m
3
(PM
2.5
) and 20.6 µg/m
3
(PM
10
) for Lyon; 14.3 µg/m
3
(PM
2.5
) and 22.04 µg/m
3
(PM
10
) for Marseille. Interestingly, all the threshold values identified by the ANNs are higher than the limits imposed by the European Parliament. Finally, a Causal Direction from Dependency (D2C) algorithm is applied to check the consistency of our findings.
This study uses two different approaches to explore the relationship between pollution emissions, economic growth, and COVID-19 deaths in India. Using a time series approach and annual data for the years from 1980 to 2018, stationarity and Toda-Yamamoto causality tests were performed. The results highlight unidirectional causality between economic growth and pollution. Then, a D2C algorithm on proportion-based causality is applied, implementing the Oryx 2.0.8 protocol in Apache. The underlying hypothesis is that a predetermined pollution concentration, caused by economic growth, could foster COVID-19 by making the respiratory system more susceptible to infection. We use data (from January 29 to May 18, 2020) on confirmed deaths (total and daily) and air pollution concentration levels for 25 major Indian cities. We verify a ML causal link between PM 2.5 , CO 2 , NO 2 , and COVID-19 deaths. The implications require careful policy design.
Municipal solid waste (MSW) is one of the most urgent issues associated with economic growth and urban population. When untreated, it generates harmful and toxic substances spreading out into the soils. When treated, they produce an important amount of Greenhouse Gas (GHG) emissions directly contributing to global warming. With its promising path to sustainability, the Danish case is of high interest since estimated results are thought to bring useful information for policy purposes. Here, we exploit the most recent and available data period (1994-2017) and investigate the causal relationship between MSW generation per capita, income level, urbanization, and GHG emissions from the waste sector in Denmark. We use an experiment based on Artificial Neural Networks and the Breitung-Candelon Spectral Granger-causality test to understand how the variables, object of the study, manage to interact within a complex ecosystem such as the environment and waste. Through numerous tests in Machine Learning, we arrive at results that imply how economic growth, identifiable by changes in per capita GDP, affects the acceleration and the velocity of the neural signal concerning waste emissions. We observe a periodical shift from the traditional linear economy to a circular economy that has important policy implications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.