Background Add-on robot-mediated therapy has proven to be more effective than conventional therapy alone in post-stroke gait rehabilitation. Such robot-mediated interventions routinely use also visual biofeedback tools. A better understanding of biofeedback content effects when used for robotic locomotor training may improve the rehabilitation process and outcomes. Methods This randomized cross-over pilot trial aimed to address the possible impact of different biofeedback contents on patients’ performance and experience during Lokomat training, by comparing a novel biofeedback based on online biological electromyographic information (EMGb) versus the commercial joint torque biofeedback (Rb) in sub-acute non ambulatory patients. 12 patients were randomized into two treatment groups, A and B, based on two different biofeedback training. For both groups, study protocol consisted of 12 Lokomat sessions, 6 for each biofeedback condition, 40 min each, 3 sessions per week of frequency. All patients performed Lokomat trainings as an add-on therapy to the conventional one that was the same for both groups and consisted of 40 min per day, 5 days per week. The primary outcome was the Modified Ashworth Spasticity Scale, and secondary outcomes included clinical, neurological, mechanical, and personal experience variables collected before and after each biofeedback training. Results Lokomat training significantly improved gait/daily living activity independence and trunk control, nevertheless, different effects due to biofeedback content were remarked. EMGb was more effective to reduce spasticity and improve muscle force at the ankle, knee and hip joints. Robot data suggest that Rb induces more adaptation to robotic movements than EMGb. Furthermore, Rb was perceived less demanding than EMGb, even though patient motivation was higher for EMGb. Robot was perceived to be effective, easy to use, reliable and safe: acceptability was rated as very high by all patients. Conclusions Specific effects can be related to biofeedback content: when muscular-based information is used, a more direct effect on lower limb spasticity and muscle activity is evidenced. In a similar manner, when biofeedback treatment is based on joint torque data, a higher patient compliance effect in terms of force exerted is achieved. Subjects who underwent EMGb seemed to be more motivated than those treated with Rb.
The factor II G20210A mutation is a recently identified congenital risk factor for venous thrombosis. Its role in artery disease is still undefined. We investigated 72 patients (35 male and 37 female) with documented ischemic stroke occurred before 50 years of age and without risk factors such as diabetes, hypertension, and hyperlipidemia; 198 thrombosis-free individuals were investigated as the control group. We found 7 heterozygotes (9.7%) and 2 homozygotes (2.7%) for the mutant factor II allele among the patients and 5 heterozygotes (2.5%) among the controls; the mutant factor II allele frequency in the patient group (7.6%, 95% confidence interval [CI], 3.3 to 11.9) was significantly higher than in the controls (1.2%; 95% CI, 0.1 to 2.3;P = .0001). The prevalence of other investigated mutant alleles (factor V G1691A, methylenetetrahydrofolate reductase C677T) did not significantly differ between the two groups. The odds ratio for ischemic stroke associated with the carriership of the mutant factor II allele (both heterozygous and homozygous genotypes) was 5.1 (95% CI, 1.6 to 16.3). Heterozygous genotype was associated with a 3.8-fold increased risk for cerebral ischemia (95% CI, 1.1 to 13.1); in particular, assuming an expected prevalence of homozygotes in the general population of 1.6 to 10,000 according to the Hardy-Weinberg equilibrium, the risk associated with the homozygous genotype was estimated exceedingly high, being increased 208-fold.
This paper presents MINDWALKER, which is an ambitious EC funded research project coordinated by Space Applications Services aiming at the development of novel Brain Neural Computer Interfaces (BNCI) and robotics technologies, with the goal of obtaining a crutch-less assistive lower limbs exoskeleton, with non-invasive brain control approach as main strategy. Complementary BNCI control approaches such as arms electromyograms (EMG) are also researched. In the last phase of the project, the developed system should undergo a clinical evaluation with Spinal Cord Injured (SCI) subjects at the Fondazione Santa Lucia, Italy. I. INTRODUCTION INDWALKWER [1] is funded by EC under an ICT research programme named e-Inclusion, that aims at improving inclusion in social life of European individuals, in particular those with reduced mobility (due to e.g. disability).The research question that initiated this project can be stated following this way: could a lower limbs assistive exoskeleton system allow SCI subjects to recover mobility, relying on convenient, non-invasive BNCI control signals acquisition -EEG based as far as possible, and without the need for stability improvement accessories such as crutches (that cannot be used by quadriplegic subjects, and that prevent paraplegic subjects from using their arms and hands Manuscript received April 30 th , 2012. MINDWALKER is supported in part by the European Commission through the FP7 Programme, with project reference ICT-2009-247959 (Health, e-Inclusion). MINDWALKER is member of the Future BNCI European network.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.