The AlpArray programme is a multinational, European consortium to advance our understanding of orogenesis and its relationship to mantle dynamics, plate reorganizations, surface processes and seismic hazard in the Alps-Apennines-Carpathians-Dinarides orogenic system. The AlpArray Seismic Network has been deployed with contributions from 36 institutions from 11 countries to map physical properties of the lithosphere and asthenosphere in 3D and thus to obtain new, high-resolution geophysical images of structures from the surface down to the base of the mantle transition zone. With over 600 broadband stations Electronic supplementary material The online version of this article (https ://doi.org/10.1007/s1071 2-018-9472-4) contains supplementary material, which is available to authorized users. operated for 2 years, this seismic experiment is one of the largest simultaneously operated seismological networks in the academic domain, employing hexagonal coverage with station spacing at less than 52 km. This dense and regularly spaced experiment is made possible by the coordinated coeval deployment of temporary stations from numerous national pools, including ocean-bottom seismometers, which were funded by different national agencies. They combine with permanent networks, which also required the cooperation of many different operators. Together these stations ultimately fill coverage gaps. Following a short overview of previous large-scale seismological experiments in the Alpine region, we here present the goals, construction, deployment, characteristics and data management of the AlpArray Seismic Network, which will provide data that is expected to be unprecedented in quality to image the complex Alpine mountains at depth.
During a three year-period, the participants of a NATO Science for Peace project performed ambient noise measurements inside buildings in four European countries. This paper reports the results relevant to reinforced concrete (RC) buildings with height in the range 1-20 floors. The total number of such buildings surveyed is 244. The most striking feature is the similarity of the height-period relationships in the four countries, which allowed the treatment of the all measurements as a single database. We found no significant correlation with other variables, and calculated a regression that is very similar to other empirical height-period relationships and quite different from code provisions and theoretical models.
SUMMARYThe aim of this work is to estimate the fundamental translational frequencies and relative damping of a large number of existing buildings, performing ambient vibration measurements. The first part of the work is devoted to the comparison of the results obtained with microtremor measurements with those obtained from earthquake recordings using four different techniques: horizontal-to-vertical spectral ratio, standard spectral ratio, non-parametric damping analysis (NonPaDAn) and half bandwidth method. We recorded local earthquakes on a five floors reinforced concrete building with a pair of accelerometers located on the ground and on top floor, and then collected microtremors at the same location of the accelerometers. The agreement between the results obtained with microtremors and earthquakes has encouraged extending ambient noise measurements to a large number of buildings. We analysed the data with the abovementioned methods to obtain the two main translational frequencies in orthogonal directions and their relative damping for 80 buildings in the urban areas of Potenza and Senigallia (Italy). The frequencies determined with different techniques are in good agreement. We do not have the same satisfactory results for the estimates of damping: the NonPaDAn provides estimates that are less dispersed and grouped around values that appear to be more realistic. Finally, we have compared the measured frequencies with other experimental results and theoretical models. Our results confirm, as reported by previous authors, that the theoretical period-height relationships overestimate the experimental data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.